
ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 1

 Abstract: Exceptional handling is a mechanism provide by
programming languages to handle some unexpected scenarios/
 errors during the program compilation and continue to precede
 program execution. Some semantic errors which can’t be
 handled by exception handling produce inappropriate results
 after program compilation. However, in order to deal with this
 issue and obtain accurate results, programmers must develop a
 code to reduce error ration in likewise scenarios. In this paper
 we introduce an extended exceptional handling framework
 developed in Java programming language and define the flow of
 the developed model. Five classes namely Plus, Minus, Division,
 Multiplication and Remainder are addedin the extended model
 to handle respective arithmetic exceptions with eight data types
 such as Byte, Short, Int, Long, Float, Double, Char and String.
 For experimentation, the developed package i.e. ZAB is imported
 on two software programs. To measure the complexity of the
 developed package, we use Cyclomatic Complexity (CC) method
 and calculated it for all the five classes. The calculation show that
 CC for Class Plus, Minus and Multi is V(G)=6.ForClassDivision
 and Reminder,V(G)=2 and respectively. Comparative analysis is
 done on the calculated results of each class and acquired output
 of the CC during experimentation show less complexity of
 Division Class. The Compatibility of Package ZAB isolates and
 handles semantic errors to reduce compile/run time errors
.commotion

 Keywords— Exceptional Handling, Computational Tools,

Semantic Error

INTRODUCTION
Exception handling is one of the key components of every
software which makes it reliable and robust product.
Developers during the software design take it in to serious
consideration as exceptions are the backbone of any Object
Oriented Language (OOL). Numerous programming
languages support exception handling as an essential part [1].
Java is an OOL uses exceptions during program execution to
avoid run time / compile time errors. A group of classes is
encapsulated in the form of package in Java. Hence to
consolidate a class file into a package provides the advantage
of reusability feature to reduce time and other system
resources. User-Defined and Built-In are two types of
packages used in Java where user-defined as name

suggested are the packages developed by the programmers
while the built-in packages are predefined functions like java.
io etc [2]. A package can be used by two ways i.e. by calling
it via its name or by importing package where second method
reduces time complexity[3].

Semantic and Syntax are the two types of exceptions which
can interrupt the flow of a program and it may be terminated
due to the occurrence of an exception. In mostof the time after
the program termination system generates an error message to
programmer which shows the exception type and urges
programmer to change the logic of the programming code.
Exception is somehow simple in the comparison of error.
Errors like syntax error, JVM errors etc. are basically
abnormal conditions and are unable to be identified and
resolved in ordinary conditions [4]. While exceptions unlike
errors are the conditions within a programming code and can
be handled by the programmer by taking some necessary
actions/changin aprogramming logic. DivideByZeroexception,
NullPointerException,ArithmeticExceptioand Array Index
Out Of Bounds Exception are some examples of exceptions in
Java language[5].

If an exception can’t be handled by the programmer it may
cause the termination of the flow of whole program after
which programmer gets an error message which is unwieldy
and leads to the change of programming logic. Changing a
programming logic is not suitable in every condition as in
most of the scenarios it require lot of resources regarding the
respective domain of the program [6]. Checked and unchecked
are the two type of exceptions reported in literature while
some built-in classes supported by the respective exceptions
are given in Table 1.

Table 1. Type of Exceptions

Checked exceptions
Class Not Found Exception

Illegal Access Exception
No Such Field Exception

EOF Exception

Zulfiqar Ali Shar, Noor Ahmed Shaikh, Samina Rajper, Aurangzeb Magsi

__

Department of Computer Science, Shah Abdul Latif University, Khairpur

A Novel Framework Of Exception Handling For
Semantic Errors Detected In Mathematical And

Computational Tools

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 2

 Unchecked
exceptions

ArithmeticException
ArrayIndexOutOfBoundsEx-

ception
NullPointerException

NegativeArraySizeException

Both checked as well as unchecked exceptions are occurred in
Java programming language [7]. The hierarchical structure
along with the graphical representations of these exceptions
including Throwable class is depicted in Figure.

1. Checkedexceptions including Throwable class is depicted
in Figure 1. Checked exceptions are usually declared in the
method’s throw clause and are thrown in the particular method
while occurring. However, unchecked exceptions are the one
which are unexpected and are very difficult to be recovered.
Null pointer, any number divided by the ‘0’ are some examples
of unchecked exceptions. In order to handle such type of
exclusions, an exceptional-handling mechanism is introduced
to facilitate by designated the protected code of program [8].
The introduced mechanism is somehow limited with the
operations. Any type of failure in exceptional-handling may
cause the disappointment in performance analysis and
produce false results which ultimately questioned the
reliability and efficiency of the software application [9]. Very
little work in this regards has been done in the field of software
development [10]. Software applications that are based on the
numerical methods are the most effecting tools in this concern
which with the type of unchecked exceptions may fail to
recognize the flow of data control [11]. Keeping in view the
requirements, in this study we introduce a completepackage
of exceptional handling which with the implementation will
handle the arithmetic exceptions and allow the source code to
be executed.

Figure 1. Variance among Checked Exception and Unchecked
Exception

LITERATURE SURVEY
On exception handling lot of work has been developed and
literature available regarding this, packages, and

overloadingmethodinprogramminglanguagesbutinobject
oriented (OO) system all these are still challenging tasks.
Today’s Software systems are more complex due to this
reason [12]. Exception handling mechanism was proposed for
organizational management in multi-agent system [13]. The
proposed system enrich the schemes and missions of the
functional specification of an organization with the concepts
such as Recovery Strategy, Notification Policy, Handling
Policy, Throwing Goaland Catchinggoal. Theproposed
mechanism is relied on abstractions that are seamlessly
integrated with organizational concepts, such as
responsibilities, goals and norms. Earlier studies reveal that
developers are unwilling or feel it hard to adopt exception
handling mechanism, and tend to ignore it until a system
failure forces them to do so. To help developers with exception
handling, researcher produced recommendations such as code
examples and exception types, which still require developers
to localize the try blocks and modify the catch block code to
fit the context.

Similarly, Jian Zhang [14] proposed a novel neural approach
to automated exception handling, which can predict locations
of try blocks and automatically generate the complete catch
blocks. The author collected a large number of Java methods
from GitHub and conduct experiments to evaluate the
approach. The evaluation results, including quantitative
measurement and human evaluation, show that theproposed
approach is highly effective and outperforms allbaselines.

Moreover, Nguyen, T. T [15] introduced two novel methods
for the correction of code of exceptional handling namely
XRank and XHand. Using both of these techniques author
also developed ExAssist tool for code recommendation. From
the implementations authorreceived 87% and 96% high
accuracy with the XRank and XHnad techniques respectively.
Similarly for the ease of developers in case of exception
handling, H Melo and others [16] made a qualitative research
and came up with the Java guideline. From the undertaken
study authors concluded that 70% guideline is available
regarding exception handling. Similarly, TT Nguyen [17]
performed an empirical study on occurrence and nature of
300 mobile apps based exceptions and related bugs along
with the suggestions that how do programmers tackle them.
However, several research articles have found certain poor
practices in exception handling processes, as well as the
predominance of associated anti-patterns. De Pádua [18][19]
investigated the relationship among software quality and
exceptional handling. During the case study it was found that
Exception flow characteristics in Java projects show a
substantial association with post-release problems which
indicate more practices towards exceptional handling. Using
the exception handling standards of sequential code, a
challenge to the parallel programming is also resolved.
Mehrabi, M [20] discussed the advancements in the parallel
computing environment using Javaannotations.

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 3

PROPOSED JAVAPACKAGE
Exceptional handling mechanism of Object Oriented
languages is unable to handle semantic errors. A case study in
this regards is performed on Java programming languages
and to encounter this problem a Java Package is developed
through which semantic errors occurred in Java programming
can be handle [21]. A package is a mechanism in a Java
introduced to encapsulate a large number of classes in to a
single package. However, in Java language source and class
files are managed via hierarchical file system as organizing a
class file in to the package is quite easy in Java. There are two
types of packages used in Java namely: In-Built Packages and
User-Defined Packages. A group of predefined packages are
called Java API whereas Figure 2 shown below is the
diagrammatical representation of Java API (predefined-
packages).

Figure 2. Diagram of Built-in Java Packages

DEVELOPED PACKAGE
A user defined-package is created by user itself and can be
import in Java program. To create a new package in Java
requires a declaration of directory of the same name as
package. Hence in this regards we create a new directory and
named it ZAB while it is optional with the Java Development
Kit-7 (JDK-7) as using the ‘–d’ option creates directory with
the same name during the program compilation. After creating
the directory the next step is the creation of class inside the
directory with the same name of directory [22]. A ZAClass is
also created inside the directory. Furthermore a package is
declared and named as ZAB after the class declaration as
shown below.

package ZAB;
“public class ZAClass
{ public void gNames(String s)
{ System.out.println(s); }}”

Above is the declaration of new package ZAB which contain
ZAClass and saved in ZA directory of the program along with

the other classes and entities.
Following is the example of a program of string value based
on the developed package.

“/* import ‘ZAClass’ class from ‘names’ ZAB */
importZAB.ZAClass;
public class PName
{ public static void main(String a[])
{ // defining and initializing the string variable namely
//with string Zulfiqar Ali
String name = “Zulfiqar Ali”;
// creating the object from ZAClass
// the ZABpackage.
ZAClassobj = new ZAClass();
obj.gNames(name);}} ”

A.Adding other classes into the defined package:

Using the same package name we created and added a class
with the same name as package by making it publically
accessible using public access identifier. With this structure
we can create and add more than one class in to the developed
package. Several in-built exceptions are defined in java
libraries [23]. The existing in-built model of exception is
extended in this research work. Some arithmetic exceptions
are used in this regards such as add, sub, div etc. The developed
model is added in to the respective exception handling model
and its flow is defined in Figure 3.

Figure 3. Flow of Extended Model of Exceptional Handling

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 4

As shown in Figure 3, we added five arithmetic exceptions in
the extended model namely: Plus, Minus, Multiply, Division
and Reminder exceptions. The mentioned exceptions are
implemented on eight data types i.e. Byte, Short, Int, Long,
Float, Double, Char and String in Java Programming language
to handle arithmetic exceptions using Method Overloading
technique [24]. Experimentations of handling the arithmetic
exceptions are performed on the eight selective primitive data
types where multiple operations were performed by creating
multiple classes in the same package where the class and
operator name remained same. Based on the total number of
exceptions we developed five different classes with the same
name for each exception. As the selective data types for the
implementation are eight in number hence, eight different
methods/functions are required in each class. Therefore using
the method overloading technique we create eight overloaded
functions and perform experiments on each of them. The
concept of inheritance is used while creating multiple classes
[25]. Structurally, we created five classes i.e. plus; minus;
multis; divis and rems where class plus is the parent class to
the class minus, class minus is parent class to class multis and
so on. This technique reduced the workload of creating
multiple objects for multiple classes. This concept of
inheritance allows us to use a single object for all the created
classes [26]. The concept of inheritance used in our
methodology is depicted in Figure 4.

Figure 4. The concept of inheritance used in our methodology.

For each created class we develop eight overloaded functions
and stored in the developed package ZAB. While figure 5 is
the depiction of the overloaded methods developed for class
Plus.

Figure 5. Depicted eight overloaded methods of plus class and calling
way.

Based on the input data type, program calls the respective
function which pass the required data such as if we use byte
values as an input data than the program calls the function
which pass byte values similarly program calls the function
which pass integer data type if the inputted value is of integer
type and so on. This mechanism performed on all the data
types where program always calls the function which handles
the respective data type value.

The problem faced by the programmers when there is a
subtraction or addition is performed on the character type or
string type values or attempt regarding the division of byte,
short, integer and long values or an attempt to reminder the
float, double, and long double values results the same problem.
An example of the scenario is defined below:

za= ”ZA” + ”Baloch”
za= ”ZA” - ”Baloch”
za = 3 / 2,
za = 555 / 3
za = 10.33 % 3,
za = 3234.343 % 23.445,

With the above programming code, the system will generate a
compile time error which is usually generated when there is a
syntax mistake occurs in the programming code. But here it
can clearly be seen that there is no any syntax mistake occur in
the above programming code. The use of above statements

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 5

restricts the whole program to be executed which ultimately
sometimes causes the whole software program failure.
To overcome this problem, we extended the existing
exceptional model of Java language. Using the exceptional
model, the system will somehow manage to avoid the errors.
By importing our proposed package, the system will
successfully compile the source code and produce results
accordingly. However, regarding the exceptional issues, the
system will not block the whole program to be executed
although it provide the run time error with the error message
(written in the body of the function) at the end of the program
execution. This method helps the whole program to be
executed and provide results of the remaining blocks of the
program.

IMPLEMENTATION AND RESULTS
Implementation
The developed package will be very beneficial for software
applications based on the linear systems which use numerical
techniques [27]. Hence keeping in view this factor we also
select some numerical methods used in the linear systems for
implementation of our developed package. In this regards, Bi-
Section and Regula-Falsi methods are selected for
experimentation. Firstly, we run Regula-Falsi method in Java
programming language by using ‘Long’ data type at some
points whereas other data types were also used to check the
outcomes of the program. When the program was run without
importing the developed package, it was observed that the
system produce a compile time error due to the use of invalid
data type at some points. Although there is a portion of the
program (except the part that uses invalid data type) valid and
accurate but due to invalid use of data type at some points the
system block the rest of the program to be executed. A second
attempt was made with the same code of program just by
importing the developed package in to the program. The
system successfully compiled the program and showed the
results of the program. However, runtime error is occurred
after the compilation of the program for that particular block
of code where we use invalid data type [28]. Overcompensate
of the developed package is that it allows the rest of the
program to be executed successfully and provide results
accordingly whereas the invalid part of the program shows
error message. Figure 6 is the depiction of Regula-Falsi
method of with and without importing of the developed
package.

Figure 6. Results of FPM.java and Regula-Falsi program,
with/ without import ZAB Package.

Similarly, an experiment is also performed on another
numerical method which is used in most of the digital systems
for scientific computation tasks known as Bisection method.
A program based on bisection is run without importing the
developed package and in figure 7(a) it can clearly be seen
that the system terminated the program with an error message
and didn’t allow further compilation. Hence after importing
our developed package, the system somehow complete the
compilation process and show the output of the program
whereas system also show a runtime error after the compilation
[29]. Figure 7(b) is the depiction of Bisection method with the
implementation of developed method.

Figure 7(a). Bi-Section.java program, without implementation
developed Package

Figure 7(b). Bi-Section.java program, with the implementation
developed Package

Likewise an attempt to add, minus, multiply, divide, and
reminder the character/string value without implementation
of the developed package, the system holds the program to be
executed and generated compile time error. Whereas, to
successfully run the program we import our developed
package after which the system displayed the runtime error
after the program compilation. Figure 8(a) and 8(b) are the
representation of a Java programs with and without importing
the developed package respectively where mathematical
operations are performed on the character/string values.

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 6

Figure 8(a). Results of Test.Java Program without Import ZAB

Package

Figure 8(b). Result of Teststr.Java program with Import ZAB
Package

RESULTS
The eventual impacts of the implementation influence the
overall software complexity [30]. Hence, we use
MCabCyclomatic complexity (CC) tool which is considered
as one of the greatest metric used to measure the complexity
of the software after importing the proposed package. This
complexity measurement tool uses number of independent
paths or flows over the graph. Throughout the graph, modules
with the high complexitiy are considered as the modules with
low cohesion and vice versa. The CC of the developed class is
measured based on the labeled number and matrix connections.
At the initial step of CC, numbers and labeled are assigned to
Plus class on the basis of its control flow. Figure 9 is
demonstration of code of Plus class which show that the
numbers are assigned accordingly.

Figure 9. show that step 1 has applied to Class Pluss

From above figure it can be seen that labeled class contain 8
overloaded functions i.e. Plus. Each method is set with
different types of arguments which perform 8 different
arithmetic operations accordingly. Separate CPU processing
time is taken by each operation of the method. Number
assigned to each method of class Plus separately with the help
of CC.

Secondly, according to the labeled number a flow graph is
generated for class Plus and calculated CC for each of the
method discretely. Figure 10 is the depiction of Flow Graph
and CC for Plus method.

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 7

Figure 10. Flow Graph and CC of Plus Method that Add Byte type
Values

The flow graph and CC of the remaining methods of same
calss are also measured accordingly. From the Figure 9 it is
observed that due to the equal number of processing
instructions and owing the same control flow, CC calculations
six out of eight methods are quite similar. Whereas, CC of the
program with multiple methods can be measured with the
following equation.
V(G) = E-N+2p (i)
Where ‘V(G)’ is the function used to measure Cyclomatic
Complexity. ‘E’ represents total number of edges, ‘N’ is the
total number of nodes while ‘p’ represents predictor or module
or no of connected regions in G.
For the above program, the complexity can be measure as
follows:
V(G) = E-N+2p
Total Edges = 6
Total Nodes = 12
Modules = 6
V(G) = 6 – 12 + 2(6) = 6 (complexity of Class Plus) (ii)

Connection Matrix of Class ‘Plus’

The ‘Plus’ class of Java programming language contain eight
overloaded methods. For understanding we produce
connection matrix (CM) of six out of the total eight methods
as an example in Table 2.

Table 2. Connection Matrix of Plus Method that Plus Byte
Type Values

Comparative Analysis of Developed Classes
The process of flow graph and connection matrices is done
for all the classes such as Class Plus, Minus, Multi, Div and
Rem. CC is also measured for all the classes. For Class Pluss
V(G)=6, Class Minus V(G)=6, Class Mutlis V(G)=6, Class
Divis V(G)=2 and Class Rems V(G)=4. During the
comparative analysis it is observed that CC for Class Div is
V(G)=2. Table 3. Providesa detailed analysis of five
mentioned classes. Hence, the CC of 5 classes i.e Pluss,
Minus, Mutlis, Divis and Rems is summarized in Table 3.

Table 3. Comparative Analysis of Developed Classes

CONCLUSION
A language control structure that allows software engineers to
express the program’s behavior when an exceptional
(surprising) event occurs is known as an exemption handling
system [31]. When an exception occurs, the program stops
preparing and ends, and the framework makes a mistake. This
lacking in the software development immensely required a
logical solution to tackle the said issue. Lacking during the
literature survey provides a way to develop such a framework
which can handle arithmetic exceptions during the program
execution. Hence, in this study we develop a mechanism in
order to tackle the said issue. We examine two exceptions that
occurred at run-time as well as assembly time, as well as their
instrument handling. Apart from various modules and
capacities provided by a specific language, it has been
discovered that the entire course of dealing with special cases
is the same in OO language [32]. When it comes to getting
syntactic and semantic exemptions, there is no difference in
how the attempt and catch blocks are used. Logically, if
semantic exemptions aren’t handled at the right time and in
the right place, the framework won’t be able to produce the
desired result. There are five administrators (+, -, *,/, %)
classes that are not available in exemption, thus getting the
semantic special situations is very important, especially in
iterative numerical problems. In this regard, an Extended
Exception Handling Model is formulated in this specialty,
which described the evolution of the exemption handling
model and we included a model with in-related exemption.
Through the strategy overburdening component of the Java

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 8

programming language, we appended five Arithmetic
Exceptions, namely Plus Exception, Minus Exception,
Multiply Exception, Divide Exception, and Reminder
Exception, to deal with the special cases of arithmetic
exceptions on (Byte, Short, Int, Long, Float, Double, long
twofold Char, String) data types. Experimentation is carried
out in the Java programming language, with the developed
model efficiently handling the five referred activities with
eight distinct data types. However, more testing is necessary
for other operations. The Cyclomatic Complexity (CC) is
calculated for each of the five classes individually throughout
the experimentation. For example, the CC of Class Pluss is
V(G)=6, V(G)=6 of Minss Class, V(G)=6 of Multis Class,
V(G)=6 of Divis Class, V(G)=2 of Divis Class, and V(G)=4
of Rems Class. At the point when analyzed CC of the each
evolved class, we discovered less intricacy of Divis class
among every one of the classes. Structure the determined
outcomes, it is proven that all of the classes, with the exception
of Divis, are more perplexing. The findings of this research
will be highly beneficial, especially for mathematics
numerical problems, as well as for understudies, engineers,
and scientists in software engineering, mathematics, measures,
and other fields.

REFERENCES
[1] M. Baldoni, C. Baroglio, O. Boissier, R Micalizio, S

Tedeschi, “Distributing Responsibilities for Exception
Handling in JaCaMo”, AAMAS ‘21: Proceedings of the
20th International Conference on Autonomous Agents
and MultiAgentSystemsages, pp. 1752–1754, 2021.

[2] E. Robbins, A. King, J. M. Howe, “Backjumping is
Exception Handling”, Theory and Practice of Logic
Programming, 21(2), pp. 125-144, 2021.

[3] X. Jia, S. Chen, X. Zhou, X. Li, R. Yu, X. Chen, J.
Xuan, “Where to Handle an Exception? Recommending
Exception Handling Locations from a Global
Perspective.”, In 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC), pp.
369-380, 2021.

[4] T. Nguyen, P. Vu, T. Nguyen, “Recommending exception
handling code.”, In 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp.
390-393, Sep. 2019.

[5] D. Marcilio, C.A. Furia, “How Java Programmers Test
Exceptional Behavior”, IEEE/ACM 18th International,
2021.

[6] E.S. Najumudheen, R. Mall, D. Samanta, “Modeling
and coverage analysis of programs with exception
handling.”, In Proceedings of the 12th Innovations on
Software Engineering Conference (formerly known as

India Software Engineering Conference),pp. 1-11, Feb.
2019.

[7] F .Ebert, F. Castor, A. Serebrenik, “An Exploratory
Study on Exception Handling Bugs in Java Programs”,
IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp.
552-556, 2020.

[8] Y. Wang, S. Wang, B. Yang, B. Gao, S. Wang, “An
effective adaptive adjustment method for service
composition exception handling in cloud
manufacturing.”, Journal of Intelligent Manufacturing,
pp. 1-17, 2020.

[9] L.P. Lima, S. R. Licoln, M. B. Carla, P. Matheus,
“Assessing exception handling testing practices in
open-source libraries” Empirical Software Engineering,
vol. 26 issue. 85, June. 2021.

[10] K. Lin, C. Tao, Z. Huang, “Exception Handling
Recommendation Based on Self-Attention Network”In
the proceedings of IEEE International Symposium on
Software Reliability Engineering Workshops
(ISSREW), Oct. 2021, Wuhan, China.

[11] S. Priyadarshan, H. Nguyen, R. Sekar, “On the Impact
of Exception Handling Compatibility on Binary
Instrumentation”, In Proceedings of the 2020 ACM
Workshop on Forming an Ecosystem Around Software
Transformation, pp. 23-28, Nov. 2020

[12] T. Nguyen, P. Vu, T. Nguyen, T, “Code recommendation
for exception handling”, In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pp. 1027-1038, 2020.

[13] M. Baldoni, C. Baroglio, O. Boissier, R. Micalizio, S.
Tedeschi, “Exception Handling in Multiagent
Organizations: Playing with JaCaMo.”, In 9th
International Workshop on Engineering Multi-Agent
Systems, EMAS, 2021.

[14] J. Zhang, X. Wang, H. Zhang, H. Sun, “Learning to
handle exceptions”, In 35th IEEE/ACM, 2020.

[15] T.T. Nguyen, P.M. Vu, T. Nguyen, “Recommendation of
exception handling code in mobile app development”,
2019, arXiv preprint arXiv:1908.06567.

[16] H. Melo, R. Coelho, C. Treude, “Unveiling Exception
Handling Guidelines Adopted by Java Developers”,
IEEE 26th International, pp. 128-139, 2019.

ILMA Journal of Technology & Software Management - IJTSM Vol. 2 Issue. 2 9

[17] T.T. Nguyen, P.M. Vu, T.T. Nguyen, “An Empirical
Study of Exception Handling Bugs and Fixes”, ACM
Southeast Conference – ACMSE – Session 2: Short
Papers – ISBN: 978-1-4503-6251-1, pp. 257-260, 2019.

[18] G. B. De Pádua, “Studying and assisting the practice of
java and c# exception handling”, Doctoral dissertation,
Concordia University, 2018

[19] G. B. De Pádua, W. Shang, “Studying the relationship
between exception handling practices and post-release
defects”, In Proceedings of the 15th International
Conference on Mining Software Repositories, pp. 564-
575, May. 2018.

[20] M. Mehrabi, N. Giacaman, O. Sinnen, “Unobtrusive
Asynchronous Exception Handling with Standard Java
Try/Catch Blocks.”, In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 855-
864, May. 2018.

[21] R. Coelho, J. Rocha, H. Melo, “A Catalogue of Java
Exception Handling Bad Smells and Refactoring”, The
Hillside Group, hillside.net, pp. 1-23, 2018.

[22] P. Preetesh, V. Tokekar, “An Investigation of Exception
Handling Practices in .NET and Java Environments.”,
International Journal of Applied Engineering Research,
vol. 13 issue. 5, pp. 2130-2140, 2018.

[23] H. Osman, A. Chiş, J. Schaerer, M. Ghafari, “On the
Evolution of Exception Usage in Java Project”, IEEE
24th, pp. 1-5, 2018.

[24] L. Qi, S. Meng, X. Zhang, R. Wang, X. Xu, Z. Zhou, W.
Dou, “An exception handling approach for privacy-
preserving service recommendation failure in a cloud
environment.”, In the Journal of Sensors, vol. 18, issue.
7, 2018.

[25] S. Nakshatri, M. Hegde, S. Thandra, ,“Analysis of
exception handling patterns in Java projects: An
empirical study”, In IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR),
pp. 500-503, May. 2016.

[26] L. Guo, S. Manglani, X. Li, Y. Jia, “Teaching autonomous
vehicles how to drive under sensing exceptions by
human driving demonstrations”, SAE Technical Paper.
sae.org, 2017.

[27] G. Raupp, G. Pautasso, C. Rapson, W. Treutterer, J.
Snipes, P. De Vries, F. Rimini, “Preliminary exception
handling analysis for the ITER plasma control system.”,
Fusion Engineering and Design, 123, pp.541-545, 2017.

[28] R. Coelho, L. Almeida, G. Gousios, A. V. Deursen, C.
Treude, “Exception handling bug hazards in Android.”,
Empirical Software Engineering, vol. 22, issue. 3,
pp.1264-1304, 2017.

[29] D. McQuillan, “Algorithmic states of exception.”,
European Journal of Cultural Studies, vol. 18, issue. 4,
pp-564-576, 2015.B after the class declaration as
shownbelow.

[30] B. Jakobus, E. A. Barbosa, A. Garcia, C. J. De Lucena,
“Contrasting exception handling code across languages:
An experience report involving 50 open source
projects.”, In IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE), pp. 183-193,
Nov. 2015.

[31] G.S. Sheikh, “A qualitative study of major programming
languages: teaching programming languages to
computer science students.”, In the Journal of
Information & Communication Technology (JICT), vol.
10, issue. 1, 2016.

[32] F. Ebert, F. Castor, A. Serebrenik, “An exploratory study
on exception handling bugs in Java programs.”, In
Journal of Systems and Software, vol. 106, pp. 82-101,
2015.

