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Abstract— Amplitudes, peaks shift and waveforms altered 

the signal response when structural damage severity and 

position change, thus having a strong association between 

damage cases and signal response shapes. The damage 

detection and building structural state evaluation are tough 

to comprehend. As the number of structural failures has 

increased, the development of methods for recognizing the 

degradation become increasingly important. Structural 

health of buildings and critical infrastructure should be 

monitor for signs of deterioration or impending failure. 

Time series modeling and forecasting was an effective tool 

for structural analysis. To emulate via artificial neural 

networks the behavior of time series model, the 

Autoregressive with Moving Average (ARMA) represents 

one of the most effective methods for structural 

characterization in operative environments. The novelty of 

this work is to attain using the unique TinyML approach 

that allowed for the embodiment of the developed models 

into a resource-constrained device. The proposed models 

were trained and tested using data collected by sensors 

strategically placed on engineering structures. The identical 

models were then converted to the TFLite format that are 

designed for devices with limited resources. The converted 

models were tested using the same dataset on Arduino and 

STM32 boards to assess how they perform in real-world 

scenarios. For univariate time series forecasting an Artificial 

Neural Network (ANN) method reduce computational effort 

and reduced severity outperformed Recurrent Neural 

Networks (RNN) and Convolutional Neural Networks 

(CNN).  

Keywords— Degree of Freedoms, Structural Health 

Monitoring, Tiny Machine Learning, TensorFlow Lite, 

Neural Network  
 

INTRODUCTION 

The research community has shown a growing interest in the 

identification of damage and assessment of the condition of 

building structures in recent decades due to long-term 

deterioration and exposure to extreme events such as 

earthquakes, resulting in many structures nearing the end of their 

life cycle. The absence of proper retrofitting measures can cause 

buildings to partially or completely collapse without warning, 

leading to human fatalities and significant economic loss and 

 

 

 
1Università di Bologna, Italy 
2Iqra University, Karachi 

 Email: * mirfananis@iqra.edu.pk 

repercussions. Therefore, it is essential to conduct damage 

detection and condition evaluation of building structures 

throughout their lifespans, especially for older structures or 

those suspected of having endured excessive loads [1]. The 

frequency of building and bridge collapses with little or no 

warning has been on the rise in many regions around the world. 

Consequently, the development of techniques for detecting the 

degradation or damage resulting from such incidents has 

become increasingly critical. Similar to monitoring the 

condition of a patient in a hospital, buildings and essential 

infrastructure should be regularly assessed for signs of 

deterioration or imminent impairment that may lead to collapse 

[16]. 

The aim of the proposed solution is to integrate Structural Health 

Monitoring (SHM) systems into preventive maintenance 

procedures, particularly for newly constructed civil structures. 

By adopting SHM, not only can the safety of existing civil 

structures be enhanced, but it can also furnish more efficient 

tools for the preventive maintenance of future ones. SHM is an 

inclusive framework for diagnosing, analyzing, and forecasting 

damage to infrastructure in aerospace, civil, and mechanical 

engineering. It encompasses the strategic installation of various 

sensors on civil structures, including strain gauges and 

temperature sensors to gauge strain on columns and roads, 

barometers and hydrometers to assess the impact of rain on the 

structure, and accelerometers to facilitate vibration-based 

analysis and diagnostics [2]. In addition, the utilization of real-

time sensing technology enables the collection of structural 

health data without disrupting the normal flow of traffic on the 

bridge. Prior to the adoption of SHM, the only available options 

for diagnosis were to wait for noticeable signs of structural 

decay or to conduct routine maintenance. 

In this study, accelerometer sensors are utilized to assess the 

health of vibrating structures in consideration of their external 

surroundings. However, real-time sensing with accelerometers 

for vibration-based diagnostics [3] requires the collection of 

numerous parameters that can be expensive in terms of device 

battery life, network bandwidth, and data transmission time to 

the data center, hindering the adoption of machine learning. To 

overcome this, machine learning is performed entirely in the 

cloud. Time series modeling is a possible method of structural 

characterization that can provide critical information about the 

structure's health condition. Therefore, this paper focuses on 

implementing system identification through neural network 

models and ARMA, where the estimation of the model order is 

a challenging task. The novelty of this work is the use of 

artificial intelligence to solve problems related to time series 

forecasting, including model order identification and forecasting 

based on the previously estimated quantity. Additionally, to 
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demonstrate the practicality of these processing tools in real-

world application scenarios, the implemented models are tested 

on resource-constrained devices. 

This research study employed an ANN structure to ascertain the 

optimal model order for ARMA modeling of linear, time-

invariant systems based on the system’s input and output data. 

The error loss function for the neural network, or coefficient of 

determination, was used for this purpose. This ANN-based 

SHM ML model was generated with data collected at a sampling 

frequency of 212 and 4KB samples (50Hz) for a 6-degree-of-

freedom system [4]. The data used in this study was sourced 

from the "Numerical tool for the Simulation of Vibration Data 

in Civil Infrastructures". The primary objective of this research 

project was to showcase the practicality of vibration-based 

engineering techniques for structural diagnostics and testing 

aimed at improving failure prevention [4]. This research study 

utilized data obtained from multiple strategically positioned 

acceleration sensors on engineering structures to train unique 

TinyML models. These models underwent rigorous training and 

testing to assess their performance in terms of precision and 

accuracy, using the Tensorflow (TF) and Keras frameworks [5]. 

The same models were then converted to the TFLite format, 

which is optimized for microcontrollers and other resource-

constrained devices. The transformed models were evaluated on 

Arduino and STM32 boards using the same dataset to determine 

their performance in real-world scenarios. The primary 

parameters of the TFLite model and the ported models on 

Arduino and STM32 were computed and verified against the 

original TF version [17]. 

In the context of always-on detection, TinyML is often used in 

the initial stage. This approach involves performing simple 

processing locally on the device, rather than sending a 

continuous stream of data to the cloud and consuming 

significant amounts of Internet bandwidth [19]. 

The stated models were implemented and run on an Embedded 

Systems based platform [6]. Performing inference on a cloud-

based platform would necessitate regular transmission of data 

from remote sensors [20]. This would lead to inference latency, 

impeding the real-time functionality of the system, higher 

bandwidth consumption, and increased power usage by the 

sensor node due to data transmission. Conversely, performing 

inference on an edge device eliminates the need for data 

transmission, resulting in minimal diagnosis latency. 

Additionally, performing inference on the edge device 

consumes less power, leading to longer battery life, and 

communication needs are less frequent compared to data 

transmission. 

This research paper aims to implement novel TinyML models 

in Structural Health Monitoring applications by means of an 

Artificial Intelligence approach utilizing ARMA modelling. 

This includes deployment of three types of Neural Networks 

(NNs) on both an Arduino Nano 33 BLE Sense board and an 

STM32 Nucleo-144 development board. The use of ANNs for 

damage detection offers several appealing features, including 

the ability to automate the problem diagnosis procedure once 

the network has been trained. However, when dealing with 

structures with multiple degrees of freedom, ANNs often need 

a large amount of computational labor. The most ANN-based 

damage detection applications are restricted to compact 

structures with few degrees of freedom [7]. Identification 

procedures often involve costly calculations, making it 

impractical to identify all unknown characteristics, such as 

mass and stiffness, simultaneously from input-output data, 

particularly for structures with numerous unknowns. 

Additionally, established system identification methodologies 

for simple structures must be evaluated for real-world 

infrastructures [18], which are more flexible and have greater 

degrees of freedom (DOFs). To reduce the number of 

unknowns and improve measurement and identification 

accuracy, it is advantageous to divide large-scale structures into 

multiple smaller substructures. 

 

The article is organized as follows: Section II outlines the 

proposed artificial neural network (ANN) structure. Section III 

describes the deployment of TinyML models, while Section IV 

presents the experimental results. Finally, the results are 

discussed along with the applicability and limitations of the 

approach. 

 

Figure. 1: Proposed ANN structure 

 

The figure 1, presented in this paper depicts the block structure 

of the system identification process. The algorithm is applied to 

a 6-degree-of-freedom structure in order to determine a model 

for the unknown system. The training of the network aims to 

emulate the behavior of the system and conduct a system 

identification process. Once the training is complete, the system 

can be characterized by determining the ARMA parameters. 

 

I. MODEL  TINYML DEPLOYMENT 

2.1 The Autoregressive Moving Average (ARMA) Model  

An ARMA (p, q) model is a hybrid of AR(p) and MA(q) models 

that can be used to model univariate time series. The future 
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value of a variable is supposed to be a linear combination of p 

prior observations, a random error, and a constant term in an 

AR(p) model. The AR(p) model is expressed mathematically as 

follows [8]: 

𝑦𝑡 = 𝑐 +∑  

𝑝

𝑖=1

𝜙𝑖𝑦𝑡−𝑖 + 𝜀𝑡

= 𝑐 + 𝜙1𝑦𝑡 − 1 + 𝜙2𝑦𝑡 − 2 +⋯……
+ 𝜙𝑝𝑦𝑡 − 𝑝 + 𝜀𝑡 

 

𝑦𝑡  and 𝜀𝑡 are the actual value and random error (or random 

shock) at time t, ϕi (i = 1, 2..., p) are model parameters, and c is 

a constant, respectively. The integer constant p represents the 

model's order. The constant word is occasionally eliminated for 

the purpose of simplicity. The Yule-Walker equations are 

commonly used to estimate parameters of an AR process from 

a time series [21]. Previous errors are used as explanatory 

variables in an MA(q) model, similar to how an AR(p) model 

regresses against previous series values. This is how the MA(q) 

model is defined: 

   

𝑦𝑡 = 𝜇 + ∑𝑗=1
𝑞

 𝜃𝑗𝜀𝑡−𝑗 + 𝜀𝑡 = 𝜇 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +

⋯………+ 𝜃𝑔𝜀𝑡−𝑞 + 𝜀𝑡  

 

The mean of the series is, the model parameters are j (j = 1, 2..., 

q), and the model order is q. The random shocks are a white 

noise process, that is a sequence of independent and identically 

distributed (i.e.) random variables with a constant variance of 

2. Random shocks are believed to follow a standard normal 

distribution in most cases. A moving average model, then, is a 

linear regression of the current time series observation against 

random shocks from one or more previous observations. Fitting 

an MA model to a time series is more challenging than fitting 

an AR model the random error terms in the former are not 

anticipated [9]. 

 

2.2 Order selection 

This study proposes the use of an artificial neural network 

(ANN) approach to identify the optimal order of an 

autoregressive-moving average (ARMA) model for linear and 

time-invariant systems based on given input and output data. 

The selection of the ARMA model order is accomplished 

through the minimization of a neural network error loss 

function, namely the coefficient of determination. 

 

In a linear regression context, 𝑅2 is a statistic that measures a 

model's ability to predict or explain a result. The amount of 

variance in the dependent variable (Y) predicted or explained 

using linear regression and the predictor variable is denoted by 

𝑅2 (X, also known as the independent variable [10]. 

 A high 𝑅2 score indicates that the model is a good fit for the 

data, though fit interpretations differ depending on the study 

environment. An 𝑅2 of 0.35, for example, suggests that using 

the covariates in the model to predict the outcome may explain 

35% of the variation in the outcome. That proportion of variance 

may be difficult to predict in certain disciplines, such as the 

social sciences; in others, such as the physical sciences, one 

would expect 𝑅2 to be much closer to 100%. In theory, 𝑅2 must 

be at least 0. Because linear regression is based on the best 

possible fit, 𝑅2 will always be greater than zero, even if the 

predictor and result variables have no relationship. 

Though the new predictor is unrelated to the outcome, 𝑅2  

increases when it is added to the model. The adjusted, 𝑅2  

(typically depicted by a bar over the R in 𝑅2) contains the same 

data as the normal 𝑅2, but penalizes for the number of predictor 

variables in the model to account for this effect. The result, 𝑅2 

increases as additional predictors are added to a multiple linear 

regression model, but the adjusted 𝑅2 only increases if the 

increase in 𝑅2 is more than what would be expected by chance 

alone. The adjusted 𝑅2 in such a model is the most realistic 

estimate of the proportion of variance predicted by the 

covariates in the model. Each of the n variables  𝑦1 , … . . , 𝑦𝑛 

(collectively known as 𝑦𝑖) in a data set is associated with a fitted 

(or modeled or predicted) value 𝑓1, … . . , 𝑓𝑛 (known as fi). 

Define the residuals as 𝑒𝑖 = 𝑦𝑖 − 𝑓𝑖  (forming a vector e). 

If �̅� is the mean of the observed data: 

�̅� =
1

𝑛
∑  

𝑛

𝑖=1

𝑦𝑖  

then the data set's variability can then be calculated using two 
sums of squares formulas: 

The residual sum of squares, often known as the residual sum of 

squares: 

𝑆𝑆res =∑  

𝑖

(𝑦𝑖 − 𝑓𝑖)
2 =∑  

𝑖

𝑒𝑖
2 

The total sum of squares (proportional to the variance of the 

data): 

𝑆𝑆tot =∑  

𝑖

(𝑦𝑖 − �̅�)2 

 

The most general definition of the coefficient of determination 

is. 

𝑅2 = 1 −
𝑆𝑆res
𝑆𝑆tot

 

In the best situation, the modeled and observed values are 

identical, resulting in 𝑆𝑆𝑟𝑒𝑠 = 0 and 𝑅2 = 1 . 𝑅2 = 0 is the 

value for a baseline model that always predicts �̅�. Models with 

lower prediction accuracy than this baseline have a negative 𝑅2. 

 

 

https://en.wikipedia.org/wiki/Residuals_(statistics)
https://en.wikipedia.org/wiki/Total_sum_of_squares
https://en.wikipedia.org/wiki/Variance
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Figure. 2: 𝑅2 = 1 −

𝑆𝑆res

𝑆𝑆tot
 

 

The degree of fit of the linear regression (shown on the right) 

to the data relative to the simple average (on the left) can be 

evaluated by examining the value of 𝑹𝟐. The areas of the blue 

squares represent the squared residuals for the linear regression. 

In Figure 2, the squared residuals related to the average value 

are depicted by the areas of the red squares. 

II. ARMA MODEL ORDER ESTIMATION 

For a given input and output time series data, the neural 

networked structure is trained for a specific number of epochs 

using a sequence of different orders (1 p pmax, 0 q qmax). 

Depending on the order combination, the ANN structure clearly 

illustrates that the input layer employs unique lags of the input 

and output time series, that are defined by the AR and MA order. 

The mean square error (MSE) of the neural network for the 

correct model order should be as low as possible. Higher order 

combinations and noise corruption can still reduce the loss 

value, but at a much slower rate. The effective order selection 

with the least MSE loss outperforms estimate in some 

circumstances [11]. To solve this challenge, by determined the 

ideal model order using both the loss value and the rate of 

change of loss. For each combination of model orders, by 

calculated the average of the initial MSEs by sorting the MSE 

values of distinct epochs in ascending order. 

The loss function's order is modest since the lowest model order 

(p) is defined as the right model order. There are a variety of 

situations in which the loss order (r value) is minimum for only 

a few (one or two) or most of the model orders combinations. 

The right model orders in those conditions were the lowest 

model orders with the lowest loss value. By looking at the output 

error loss of the ANN structure at different orders and 

discovered that the best projected output was when the order was 

set to p = 6 with a loss value of 0.28, as shown in figures 3. 

 

Figure 3: loss function 𝑅2 

 

Figure 3 figure shows loss function 𝑅2 for different orders 

using the system identification structure with proposed ANN 

topology. 

 

The optimal model order (p) is defined as the correct model 

order. The best results were assessed at order p=6 with a loss 

value of 0.047 as the minimum. 

 

In this study, the potential for Neural Network models to 

emulate the system identification capability of an ARMA 

model was explored. Three types of Neural Networks (NNs) 

were analyzed to predict the behavior of the system 

identification: A Convolutional Neural Network (CNN) 

represented in a block structure in Figure 5a, a Recurrent Neural 

Network (RNN) block representation shown in Figure 5b, and 

an Artificial Neural Network (ANN) block structure depicted 

in Figure 5c. The predicted most satisfactory behavior was 

achieved through these analyses. 
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(b) 

 

 (c) 
Figure 4: Model’s Parameters. (a) ANN Model, (b) RNN Model, (c) 

CNN Model 

 

Furthermore, this system necessitates that the same inputs and 

output shapes be supplied as those used with Artificial Neural 

Networks (ANNs). Through the process of sampling, the 

coefficients remain unchanged and ready for the next system of 

signal reception. 

Figure 4a shows that the ANN model not only has the most 

satisfactory behavior, but also has a lower total number of 

parameters than CNN and RNN structures. Figure 4b illustrates 

the computation complexity of the CNN structure. For 

comparison with other structures, the total number of 

parameters in the RNN structure [12] shown in figure:4c. 

 

 
(a) 

 (b) 

 
(c) 

 
Figure 5: Block structure of (a) ANN Model, (b) RNN Model, (c) 

CNN Model 

 

III. RESULTS 

Figure:6 shows the DOF 6 structure that can be enhance 

condition or damage condition in both cases having different 

modelling output by tracking these changes can infer the health 

of structure. Collected signals from numerical tool (DOF)6 

data. Each signal sized 4KB samples at frequency 100Hz. 

 

 
Figure 6:  DOF6 data, in Civil Infrastructures 

 

0                                                                              1000                                                         2000                                                                             3000                                                                           4000 

Samples 



ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2 

 

44 

 

To assess the performance of a model, by looking at how it 

performs on its training data. However, this only tells us part of 

the story. During training, a model learns to fit its training data 

as closely as possible. The figure:7a showing samples of training 

signal used in teaching our model. 

 

(a) 

 

 

 

 

 

 

 

 

Figure7: Sample sequence (a) 4 and (b) 1 for testing ANN model 

In certain circumstances, the model may overfit the training 
data, leading to good performance on training data but poor 
performance in real-world situations. To detect this, the model 
should be validated with new data that was not used during 
training. The data should be split into chunks for training and 
validation in such a way that they have the same information 
distribution and preserve the data structure. For time-series data, 
the chunks can be contiguous in time, while for non-time-series 
data, the data points can be sampled randomly. During training, 
the model learns from the training dataset, and validation and 
test datasets are used periodically to calculate loss. Since the 
model has not seen this data before, its loss score is a more 
reliable measure of its performance. By comparing training and 
test loss (and other metrics), we can determine whether the 
model is overfitting. Figure 7b shows the use of Sample 
Sequence 1 to evaluate a model's performance. 

Figure 8 illustrates the split and shape of the univariate sequence 
for both the training and testing datasets. The order of the 
ARMA model, which is 6, was determined based on the 
minimum loss function, specifically the coefficient of 
determination, as explained in the order selection section. 

 

Figure 8: Splitting and Shaping, how much samples of past values 
are using to predict next value. 

 
To stop training when a model’s performance stops 
improving. At the point that it begins to make accurate 
predictions, it is said to have converged. To regulate whether 
a model has coincided, by inspecting graphs of its show 
during training. Two ordinary execution metrics are loss and 
accuracy [13]. The loss metric provides a quantitative 
measure of the model's deviation from the expected results, 
while the accuracy metric indicates the percentage of correct 
forecasts using the coefficient of determination method. An 
ideal model should have a loss of 0.0 and accuracy of 100%, 
but real-world models are seldom perfect. In Figure 9a and 
b, the loss and accuracy are shown during the training of a 
deep learning network. As training progresses, the accuracy 
increases and the loss decreases, until the model reaches a 
point where it no longer improves. To attempt to improve 
the model's performance, we can modify our model 
architecture and adjust various hyperparameters that 
regulate the training process, such as the number of teaching 
epochs and the number of neurons in each layer. 

 

                             (a)                                            (b) 
Figure 9: (a) Loss vs. epoch, (b) Accuracy vs. epoch 

Based on the Loss vs. epoch (blue validation, green training) 

graph in Figure 9 (a), and the Accuracy vs epoch (blue 

validation, green training) graph in Figure 9 (b), it can be 

inferred that the model is currently in a balanced state with high 

accuracy. 

(b) 
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The loss and accuracy during training for an ANN model, as 

training progresses, accuracy increases and loss is reduced, until 

by reaching a point at which the model no longer improves.  

 

 

 
Figure 10: Eye Diagram 

 

Figure 10 illustrates the Artificial Neural Network (ANN) 

approach that was developed to estimate and train the ARMA 

model. The predicted outcomes are compared to the actual 

samples using our test dataset. 

 

 
Figure 11: Comparison of expected time domain values with actual 

values 

 

A comparison between the expected time domain values and 

the actual values is illustrated in Figure 11. The red signal 

indicates the predicted results after ARMA model training, 

while the green signal represents the actual system samples. 

 

 
Figure 12:  Shows frequency response (blue represents original signal 

and red is predicted signal) 

 

 

 
Figure 13: ARMA model size using different approach 

 

 

The size of the ARMA model has been reduced using the 

quantized approach and integrated with Tensor Flow Lite for 

deployment on embedded devices. The original size of the 

model was 163860 bytes, but after quantization, it has been 

reduced to 6912 bytes, as illustrated in Figure 13. 

 

 
 

Figure 14: TFLite Model visualized in Netron 

 

Figure 14 depicts the deployment of the TFLite model, 

visualized in Netron, on both the Arduino Nano BLE 33 and 

STM32 Nucleo F7 Board, along with the use of the same 

dataset for testing the model. 

 

The use of a quantized version of Tensor Flow Lite, as shown 

in Figure 15, allowed for a simplified model that was converted 

to a binary file, reducing its size to 6912 bytes. This reduced 

model was deployed on an embedded device, specifically an 

Arduino Nano BLE sensor. The size of the Tensor was 21KB, 

while the script used for inference was around 30KB in size. 

The deployed model was tested, and the recorded results can be 

seen in Figure 14, along with the frequency response depicted 

in Figure 16. A comparison was made between the time domain 

signal predicted by the Colaboratory file and the data collected 

from the embedded device [14] is shown in the result. 
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Figure 15: Frequency signal recorded 

 

In Figure 15, the blue line represents the frequency signal 

recorded from the Nano BLE sensor, while the red line shows 

the predicted signal generated by the ANN model after training. 

 

 
Figure 16: Frequency response 

 

Figure 16 displays the frequency response, where the green 

signal corresponds to the recorded signal from Nano BLE sense 

and the red signal represents the predicted signal of the ANN 

model after training. 

 

IV. CONCLUSION 

After analyzing the SHM application, it was found that 

implementing ARMA models using the ANN approach is 

challenging due to the need for real-time sensing. Therefore, 

signals from numerical tool (DOF)6 data were utilized for 

vibration-based diagnostics [15]. The implementation of 

TinyML has been leveraged to execute system identification 

through an Autoregressive Moving Average (ARMA) 

model. The challenge of uniquely defining ARMA models 

using back propagation neural networks has been addressed. 

The trained ANN model's weights and biases enable the 

retrieval of the actual ARMA parameters, which will be 

presented in future developments. In the current 

implementation, the ANN has emulated the behavior of the 

ARMA model. The order of a model is determined before its 

parameters are estimated through coefficient of 

determination and the best fit information criteria and 

residual analysis. Insufficiently or ambiguously defined 

models make it impractical for the associated estimation 

algorithm to arrive at a convergent solution. This limits the 

number of possible trial models and compels the analyst to 

carefully select trial models. A good intuition or idea of the 

final model's specifications is the most reliable guarantee of 

finding the correct order and model specification in a 

reasonably short time. 
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