
ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

39

Development Of ARMA Algorithm For System

Identification In Structure Health Monitoring
Faizal Afzal1, M. Irfan Anis2, Marium Shakeel2

Abstract— Amplitudes, peaks shift and waveforms altered

the signal response when structural damage severity and

position change, thus having a strong association between

damage cases and signal response shapes. The damage

detection and building structural state evaluation are tough

to comprehend. As the number of structural failures has

increased, the development of methods for recognizing the

degradation become increasingly important. Structural

health of buildings and critical infrastructure should be

monitor for signs of deterioration or impending failure.

Time series modeling and forecasting was an effective tool

for structural analysis. To emulate via artificial neural

networks the behavior of time series model, the

Autoregressive with Moving Average (ARMA) represents

one of the most effective methods for structural

characterization in operative environments. The novelty of

this work is to attain using the unique TinyML approach

that allowed for the embodiment of the developed models

into a resource-constrained device. The proposed models

were trained and tested using data collected by sensors

strategically placed on engineering structures. The identical

models were then converted to the TFLite format that are

designed for devices with limited resources. The converted

models were tested using the same dataset on Arduino and

STM32 boards to assess how they perform in real-world

scenarios. For univariate time series forecasting an Artificial

Neural Network (ANN) method reduce computational effort

and reduced severity outperformed Recurrent Neural

Networks (RNN) and Convolutional Neural Networks

(CNN).

Keywords— Degree of Freedoms, Structural Health

Monitoring, Tiny Machine Learning, TensorFlow Lite,

Neural Network

INTRODUCTION

The research community has shown a growing interest in the

identification of damage and assessment of the condition of

building structures in recent decades due to long-term

deterioration and exposure to extreme events such as

earthquakes, resulting in many structures nearing the end of their

life cycle. The absence of proper retrofitting measures can cause

buildings to partially or completely collapse without warning,

leading to human fatalities and significant economic loss and

1Università di Bologna, Italy
2Iqra University, Karachi

 Email: * mirfananis@iqra.edu.pk

repercussions. Therefore, it is essential to conduct damage

detection and condition evaluation of building structures

throughout their lifespans, especially for older structures or

those suspected of having endured excessive loads [1]. The

frequency of building and bridge collapses with little or no

warning has been on the rise in many regions around the world.

Consequently, the development of techniques for detecting the

degradation or damage resulting from such incidents has

become increasingly critical. Similar to monitoring the

condition of a patient in a hospital, buildings and essential

infrastructure should be regularly assessed for signs of

deterioration or imminent impairment that may lead to collapse

[16].

The aim of the proposed solution is to integrate Structural Health

Monitoring (SHM) systems into preventive maintenance

procedures, particularly for newly constructed civil structures.

By adopting SHM, not only can the safety of existing civil

structures be enhanced, but it can also furnish more efficient

tools for the preventive maintenance of future ones. SHM is an

inclusive framework for diagnosing, analyzing, and forecasting

damage to infrastructure in aerospace, civil, and mechanical

engineering. It encompasses the strategic installation of various

sensors on civil structures, including strain gauges and

temperature sensors to gauge strain on columns and roads,

barometers and hydrometers to assess the impact of rain on the

structure, and accelerometers to facilitate vibration-based

analysis and diagnostics [2]. In addition, the utilization of real-

time sensing technology enables the collection of structural

health data without disrupting the normal flow of traffic on the

bridge. Prior to the adoption of SHM, the only available options

for diagnosis were to wait for noticeable signs of structural

decay or to conduct routine maintenance.

In this study, accelerometer sensors are utilized to assess the

health of vibrating structures in consideration of their external

surroundings. However, real-time sensing with accelerometers

for vibration-based diagnostics [3] requires the collection of

numerous parameters that can be expensive in terms of device

battery life, network bandwidth, and data transmission time to

the data center, hindering the adoption of machine learning. To

overcome this, machine learning is performed entirely in the

cloud. Time series modeling is a possible method of structural

characterization that can provide critical information about the

structure's health condition. Therefore, this paper focuses on

implementing system identification through neural network

models and ARMA, where the estimation of the model order is

a challenging task. The novelty of this work is the use of

artificial intelligence to solve problems related to time series

forecasting, including model order identification and forecasting

based on the previously estimated quantity. Additionally, to

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

40

demonstrate the practicality of these processing tools in real-

world application scenarios, the implemented models are tested

on resource-constrained devices.

This research study employed an ANN structure to ascertain the

optimal model order for ARMA modeling of linear, time-

invariant systems based on the system’s input and output data.

The error loss function for the neural network, or coefficient of

determination, was used for this purpose. This ANN-based

SHM ML model was generated with data collected at a sampling

frequency of 212 and 4KB samples (50Hz) for a 6-degree-of-

freedom system [4]. The data used in this study was sourced

from the "Numerical tool for the Simulation of Vibration Data

in Civil Infrastructures". The primary objective of this research

project was to showcase the practicality of vibration-based

engineering techniques for structural diagnostics and testing

aimed at improving failure prevention [4]. This research study

utilized data obtained from multiple strategically positioned

acceleration sensors on engineering structures to train unique

TinyML models. These models underwent rigorous training and

testing to assess their performance in terms of precision and

accuracy, using the Tensorflow (TF) and Keras frameworks [5].

The same models were then converted to the TFLite format,

which is optimized for microcontrollers and other resource-

constrained devices. The transformed models were evaluated on

Arduino and STM32 boards using the same dataset to determine

their performance in real-world scenarios. The primary

parameters of the TFLite model and the ported models on

Arduino and STM32 were computed and verified against the

original TF version [17].

In the context of always-on detection, TinyML is often used in

the initial stage. This approach involves performing simple

processing locally on the device, rather than sending a

continuous stream of data to the cloud and consuming

significant amounts of Internet bandwidth [19].

The stated models were implemented and run on an Embedded

Systems based platform [6]. Performing inference on a cloud-

based platform would necessitate regular transmission of data

from remote sensors [20]. This would lead to inference latency,

impeding the real-time functionality of the system, higher

bandwidth consumption, and increased power usage by the

sensor node due to data transmission. Conversely, performing

inference on an edge device eliminates the need for data

transmission, resulting in minimal diagnosis latency.

Additionally, performing inference on the edge device

consumes less power, leading to longer battery life, and

communication needs are less frequent compared to data

transmission.

This research paper aims to implement novel TinyML models

in Structural Health Monitoring applications by means of an

Artificial Intelligence approach utilizing ARMA modelling.

This includes deployment of three types of Neural Networks

(NNs) on both an Arduino Nano 33 BLE Sense board and an

STM32 Nucleo-144 development board. The use of ANNs for

damage detection offers several appealing features, including

the ability to automate the problem diagnosis procedure once

the network has been trained. However, when dealing with

structures with multiple degrees of freedom, ANNs often need

a large amount of computational labor. The most ANN-based

damage detection applications are restricted to compact

structures with few degrees of freedom [7]. Identification

procedures often involve costly calculations, making it

impractical to identify all unknown characteristics, such as

mass and stiffness, simultaneously from input-output data,

particularly for structures with numerous unknowns.

Additionally, established system identification methodologies

for simple structures must be evaluated for real-world

infrastructures [18], which are more flexible and have greater

degrees of freedom (DOFs). To reduce the number of

unknowns and improve measurement and identification

accuracy, it is advantageous to divide large-scale structures into

multiple smaller substructures.

The article is organized as follows: Section II outlines the

proposed artificial neural network (ANN) structure. Section III

describes the deployment of TinyML models, while Section IV

presents the experimental results. Finally, the results are

discussed along with the applicability and limitations of the

approach.

Figure. 1: Proposed ANN structure

The figure 1, presented in this paper depicts the block structure

of the system identification process. The algorithm is applied to

a 6-degree-of-freedom structure in order to determine a model

for the unknown system. The training of the network aims to

emulate the behavior of the system and conduct a system

identification process. Once the training is complete, the system

can be characterized by determining the ARMA parameters.

I. MODEL TINYML DEPLOYMENT

2.1 The Autoregressive Moving Average (ARMA) Model

An ARMA (p, q) model is a hybrid of AR(p) and MA(q) models

that can be used to model univariate time series. The future

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

41

value of a variable is supposed to be a linear combination of p

prior observations, a random error, and a constant term in an

AR(p) model. The AR(p) model is expressed mathematically as

follows [8]:

𝑦𝑡 = 𝑐 +∑  

𝑝

𝑖=1

𝜙𝑖𝑦𝑡−𝑖 + 𝜀𝑡

= 𝑐 + 𝜙1𝑦𝑡 − 1 + 𝜙2𝑦𝑡 − 2 +⋯……
+ 𝜙𝑝𝑦𝑡 − 𝑝 + 𝜀𝑡

𝑦𝑡 and 𝜀𝑡 are the actual value and random error (or random

shock) at time t, ϕi (i = 1, 2..., p) are model parameters, and c is

a constant, respectively. The integer constant p represents the

model's order. The constant word is occasionally eliminated for

the purpose of simplicity. The Yule-Walker equations are

commonly used to estimate parameters of an AR process from

a time series [21]. Previous errors are used as explanatory

variables in an MA(q) model, similar to how an AR(p) model

regresses against previous series values. This is how the MA(q)

model is defined:

𝑦𝑡 = 𝜇 + ∑𝑗=1
𝑞

 𝜃𝑗𝜀𝑡−𝑗 + 𝜀𝑡 = 𝜇 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +

⋯………+ 𝜃𝑔𝜀𝑡−𝑞 + 𝜀𝑡

The mean of the series is, the model parameters are j (j = 1, 2...,

q), and the model order is q. The random shocks are a white

noise process, that is a sequence of independent and identically

distributed (i.e.) random variables with a constant variance of

2. Random shocks are believed to follow a standard normal

distribution in most cases. A moving average model, then, is a

linear regression of the current time series observation against

random shocks from one or more previous observations. Fitting

an MA model to a time series is more challenging than fitting

an AR model the random error terms in the former are not

anticipated [9].

2.2 Order selection

This study proposes the use of an artificial neural network

(ANN) approach to identify the optimal order of an

autoregressive-moving average (ARMA) model for linear and

time-invariant systems based on given input and output data.

The selection of the ARMA model order is accomplished

through the minimization of a neural network error loss

function, namely the coefficient of determination.

In a linear regression context, 𝑅2 is a statistic that measures a

model's ability to predict or explain a result. The amount of

variance in the dependent variable (Y) predicted or explained

using linear regression and the predictor variable is denoted by

𝑅2 (X, also known as the independent variable [10].

 A high 𝑅2 score indicates that the model is a good fit for the

data, though fit interpretations differ depending on the study

environment. An 𝑅2 of 0.35, for example, suggests that using

the covariates in the model to predict the outcome may explain

35% of the variation in the outcome. That proportion of variance

may be difficult to predict in certain disciplines, such as the

social sciences; in others, such as the physical sciences, one

would expect 𝑅2 to be much closer to 100%. In theory, 𝑅2 must

be at least 0. Because linear regression is based on the best

possible fit, 𝑅2 will always be greater than zero, even if the

predictor and result variables have no relationship.

Though the new predictor is unrelated to the outcome, 𝑅2

increases when it is added to the model. The adjusted, 𝑅2

(typically depicted by a bar over the R in 𝑅2) contains the same

data as the normal 𝑅2, but penalizes for the number of predictor

variables in the model to account for this effect. The result, 𝑅2

increases as additional predictors are added to a multiple linear

regression model, but the adjusted 𝑅2 only increases if the

increase in 𝑅2 is more than what would be expected by chance

alone. The adjusted 𝑅2 in such a model is the most realistic

estimate of the proportion of variance predicted by the

covariates in the model. Each of the n variables 𝑦1 , … . . , 𝑦𝑛

(collectively known as 𝑦𝑖) in a data set is associated with a fitted

(or modeled or predicted) value 𝑓1, … . . , 𝑓𝑛 (known as fi).

Define the residuals as 𝑒𝑖 = 𝑦𝑖 − 𝑓𝑖 (forming a vector e).

If �̅� is the mean of the observed data:

�̅� =
1

𝑛
∑  

𝑛

𝑖=1

𝑦𝑖

then the data set's variability can then be calculated using two
sums of squares formulas:

The residual sum of squares, often known as the residual sum of

squares:

𝑆𝑆res =∑  

𝑖

(𝑦𝑖 − 𝑓𝑖)
2 =∑  

𝑖

𝑒𝑖
2

The total sum of squares (proportional to the variance of the

data):

𝑆𝑆tot =∑  

𝑖

(𝑦𝑖 − �̅�)2

The most general definition of the coefficient of determination

is.

𝑅2 = 1 −
𝑆𝑆res
𝑆𝑆tot

In the best situation, the modeled and observed values are

identical, resulting in 𝑆𝑆𝑟𝑒𝑠 = 0 and 𝑅2 = 1 . 𝑅2 = 0 is the

value for a baseline model that always predicts �̅�. Models with

lower prediction accuracy than this baseline have a negative 𝑅2.

https://en.wikipedia.org/wiki/Residuals_(statistics)
https://en.wikipedia.org/wiki/Total_sum_of_squares
https://en.wikipedia.org/wiki/Variance

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

42

Figure. 2: 𝑅2 = 1 −

𝑆𝑆res

𝑆𝑆tot

The degree of fit of the linear regression (shown on the right)

to the data relative to the simple average (on the left) can be

evaluated by examining the value of 𝑹𝟐. The areas of the blue

squares represent the squared residuals for the linear regression.

In Figure 2, the squared residuals related to the average value

are depicted by the areas of the red squares.

II. ARMA MODEL ORDER ESTIMATION

For a given input and output time series data, the neural

networked structure is trained for a specific number of epochs

using a sequence of different orders (1 p pmax, 0 q qmax).

Depending on the order combination, the ANN structure clearly

illustrates that the input layer employs unique lags of the input

and output time series, that are defined by the AR and MA order.

The mean square error (MSE) of the neural network for the

correct model order should be as low as possible. Higher order

combinations and noise corruption can still reduce the loss

value, but at a much slower rate. The effective order selection

with the least MSE loss outperforms estimate in some

circumstances [11]. To solve this challenge, by determined the

ideal model order using both the loss value and the rate of

change of loss. For each combination of model orders, by

calculated the average of the initial MSEs by sorting the MSE

values of distinct epochs in ascending order.

The loss function's order is modest since the lowest model order

(p) is defined as the right model order. There are a variety of

situations in which the loss order (r value) is minimum for only

a few (one or two) or most of the model orders combinations.

The right model orders in those conditions were the lowest

model orders with the lowest loss value. By looking at the output

error loss of the ANN structure at different orders and

discovered that the best projected output was when the order was

set to p = 6 with a loss value of 0.28, as shown in figures 3.

Figure 3: loss function 𝑅2

Figure 3 figure shows loss function 𝑅2 for different orders

using the system identification structure with proposed ANN

topology.

The optimal model order (p) is defined as the correct model

order. The best results were assessed at order p=6 with a loss

value of 0.047 as the minimum.

In this study, the potential for Neural Network models to

emulate the system identification capability of an ARMA

model was explored. Three types of Neural Networks (NNs)

were analyzed to predict the behavior of the system

identification: A Convolutional Neural Network (CNN)

represented in a block structure in Figure 5a, a Recurrent Neural

Network (RNN) block representation shown in Figure 5b, and

an Artificial Neural Network (ANN) block structure depicted

in Figure 5c. The predicted most satisfactory behavior was

achieved through these analyses.

(a)

0.36

0.32

0.273

0.21

0.16

0.122
0.109

0.097

0.36

0.32

0.265

0.19

0.154

0.12
0.103

0.086

0.36

0.3

0.25

0.17

0.11
0.088

0.067
0.047

0.36

0.3

0.253

0.179

0.125

0.099

0.069
0.049

0.36

0.31

0.251

0.186

0.12
0.102

0.073
0.053

0.04

0.14

0.24

0.34

0 200 400 600 800 1000 1200

Lo
ss

 F
u

n
ct

io
n

 R
^2

Epochs

Model Order Performance Comparison

Orders (P=2)

Orders (P=4)

Orders (P=6)

Orders (P=8)

Orders (P=10)

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

43

(b)

 (c)
Figure 4: Model’s Parameters. (a) ANN Model, (b) RNN Model, (c)

CNN Model

Furthermore, this system necessitates that the same inputs and

output shapes be supplied as those used with Artificial Neural

Networks (ANNs). Through the process of sampling, the

coefficients remain unchanged and ready for the next system of

signal reception.

Figure 4a shows that the ANN model not only has the most

satisfactory behavior, but also has a lower total number of

parameters than CNN and RNN structures. Figure 4b illustrates

the computation complexity of the CNN structure. For

comparison with other structures, the total number of

parameters in the RNN structure [12] shown in figure:4c.

(a)

 (b)

(c)

Figure 5: Block structure of (a) ANN Model, (b) RNN Model, (c)

CNN Model

III. RESULTS

Figure:6 shows the DOF 6 structure that can be enhance

condition or damage condition in both cases having different

modelling output by tracking these changes can infer the health

of structure. Collected signals from numerical tool (DOF)6

data. Each signal sized 4KB samples at frequency 100Hz.

Figure 6: DOF6 data, in Civil Infrastructures

0 1000 2000 3000 4000

Samples

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

44

To assess the performance of a model, by looking at how it

performs on its training data. However, this only tells us part of

the story. During training, a model learns to fit its training data

as closely as possible. The figure:7a showing samples of training

signal used in teaching our model.

(a)

Figure7: Sample sequence (a) 4 and (b) 1 for testing ANN model

In certain circumstances, the model may overfit the training
data, leading to good performance on training data but poor
performance in real-world situations. To detect this, the model
should be validated with new data that was not used during
training. The data should be split into chunks for training and
validation in such a way that they have the same information
distribution and preserve the data structure. For time-series data,
the chunks can be contiguous in time, while for non-time-series
data, the data points can be sampled randomly. During training,
the model learns from the training dataset, and validation and
test datasets are used periodically to calculate loss. Since the
model has not seen this data before, its loss score is a more
reliable measure of its performance. By comparing training and
test loss (and other metrics), we can determine whether the
model is overfitting. Figure 7b shows the use of Sample
Sequence 1 to evaluate a model's performance.

Figure 8 illustrates the split and shape of the univariate sequence
for both the training and testing datasets. The order of the
ARMA model, which is 6, was determined based on the
minimum loss function, specifically the coefficient of
determination, as explained in the order selection section.

Figure 8: Splitting and Shaping, how much samples of past values
are using to predict next value.

To stop training when a model’s performance stops
improving. At the point that it begins to make accurate
predictions, it is said to have converged. To regulate whether
a model has coincided, by inspecting graphs of its show
during training. Two ordinary execution metrics are loss and
accuracy [13]. The loss metric provides a quantitative
measure of the model's deviation from the expected results,
while the accuracy metric indicates the percentage of correct
forecasts using the coefficient of determination method. An
ideal model should have a loss of 0.0 and accuracy of 100%,
but real-world models are seldom perfect. In Figure 9a and
b, the loss and accuracy are shown during the training of a
deep learning network. As training progresses, the accuracy
increases and the loss decreases, until the model reaches a
point where it no longer improves. To attempt to improve
the model's performance, we can modify our model
architecture and adjust various hyperparameters that
regulate the training process, such as the number of teaching
epochs and the number of neurons in each layer.

 (a) (b)
Figure 9: (a) Loss vs. epoch, (b) Accuracy vs. epoch

Based on the Loss vs. epoch (blue validation, green training)

graph in Figure 9 (a), and the Accuracy vs epoch (blue

validation, green training) graph in Figure 9 (b), it can be

inferred that the model is currently in a balanced state with high

accuracy.

(b)

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

45

The loss and accuracy during training for an ANN model, as

training progresses, accuracy increases and loss is reduced, until

by reaching a point at which the model no longer improves.

Figure 10: Eye Diagram

Figure 10 illustrates the Artificial Neural Network (ANN)

approach that was developed to estimate and train the ARMA

model. The predicted outcomes are compared to the actual

samples using our test dataset.

Figure 11: Comparison of expected time domain values with actual

values

A comparison between the expected time domain values and

the actual values is illustrated in Figure 11. The red signal

indicates the predicted results after ARMA model training,

while the green signal represents the actual system samples.

Figure 12: Shows frequency response (blue represents original signal

and red is predicted signal)

Figure 13: ARMA model size using different approach

The size of the ARMA model has been reduced using the

quantized approach and integrated with Tensor Flow Lite for

deployment on embedded devices. The original size of the

model was 163860 bytes, but after quantization, it has been

reduced to 6912 bytes, as illustrated in Figure 13.

Figure 14: TFLite Model visualized in Netron

Figure 14 depicts the deployment of the TFLite model,

visualized in Netron, on both the Arduino Nano BLE 33 and

STM32 Nucleo F7 Board, along with the use of the same

dataset for testing the model.

The use of a quantized version of Tensor Flow Lite, as shown

in Figure 15, allowed for a simplified model that was converted

to a binary file, reducing its size to 6912 bytes. This reduced

model was deployed on an embedded device, specifically an

Arduino Nano BLE sensor. The size of the Tensor was 21KB,

while the script used for inference was around 30KB in size.

The deployed model was tested, and the recorded results can be

seen in Figure 14, along with the frequency response depicted

in Figure 16. A comparison was made between the time domain

signal predicted by the Colaboratory file and the data collected

from the embedded device [14] is shown in the result.

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

46

Figure 15: Frequency signal recorded

In Figure 15, the blue line represents the frequency signal

recorded from the Nano BLE sensor, while the red line shows

the predicted signal generated by the ANN model after training.

Figure 16: Frequency response

Figure 16 displays the frequency response, where the green

signal corresponds to the recorded signal from Nano BLE sense

and the red signal represents the predicted signal of the ANN

model after training.

IV. CONCLUSION

After analyzing the SHM application, it was found that

implementing ARMA models using the ANN approach is

challenging due to the need for real-time sensing. Therefore,

signals from numerical tool (DOF)6 data were utilized for

vibration-based diagnostics [15]. The implementation of

TinyML has been leveraged to execute system identification

through an Autoregressive Moving Average (ARMA)

model. The challenge of uniquely defining ARMA models

using back propagation neural networks has been addressed.

The trained ANN model's weights and biases enable the

retrieval of the actual ARMA parameters, which will be

presented in future developments. In the current

implementation, the ANN has emulated the behavior of the

ARMA model. The order of a model is determined before its

parameters are estimated through coefficient of

determination and the best fit information criteria and

residual analysis. Insufficiently or ambiguously defined

models make it impractical for the associated estimation

algorithm to arrive at a convergent solution. This limits the

number of possible trial models and compels the analyst to

carefully select trial models. A good intuition or idea of the

final model's specifications is the most reliable guarantee of

finding the correct order and model specification in a

reasonably short time.

 REFERENCES.

[1] Stepinac, Mislav, and Mateo Gašparović. "A review of

emerging technologies for an assessment of safety and

seismic vulnerability and damage detection of existing

masonry structures." Applied Sciences 10, no. 15 (2020):

5060.

[2] Batten, M., W. Powrie, R. Boorman, H-T. Yu, and Q.

Leiper. "Use of vibrating wire strain gauges to measure

loads in tubular steel props supporting deep retaining

walls." Proceedings of the Institution of Civil Engineers-

Geotechnical Engineering 137, no. 1 (1999): 3-13.

[3] Akpudo, Ugochukwu Ejike, and Jang-Wook Hur. "D-

dCNN: A Novel Hybrid Deep Learning-Based Tool for

Vibration-Based Diagnostics." Energies 14, no. 17 (2021):

5286.

[4] Fujimoto, Hiroshi. "Visual servoing of 6 dof manipulator

by multirate control with depth identification." In 42nd

IEEE International Conference on Decision and Control

(IEEE Cat. No. 03CH37475), vol. 5, pp. 5408-5413. IEEE,

2003.

[5] Bisong, Ekaba. "Tensorflow 2.0 and keras." In Building

Machine Learning and Deep Learning Models on Google

Cloud Platform, pp. 347-399. Apress, Berkeley, CA, 2019.

[6] Gay, Warren. "Beginning STM32." Beginning STM32

(2018)..

[7] Neves, Ana C., Ignacio Gonzalez, John Leander, and Raid

Karoumi. "Structural health monitoring of bridges: a

model-free ANN-based approach to damage detection."

Journal of Civil Structural Health Monitoring 7, no. 5

(2017): 689-702.

[8] Na, Dokyun, Sunjae Lee, and Doheon Lee. "Mathematical

modeling of translation initiation for the estimation of its

efficiency to computationally design mRNA sequences

with desired expression levels in prokaryotes." BMC

systems biology 4, no. 1 (2010): 1-16.

[9] Zhang, G. Peter. "Time series forecasting using a hybrid

ARIMA and neural network model." Neurocomputing 50

(2003): 159-175.

[10] Alexander, David LJ, Alexander Tropsha, and David A.

Winkler. "Beware of R 2: simple, unambiguous assessment

of the prediction accuracy of QSAR and QSPR models."

Journal of chemical information and modeling 55, no. 7

(2015): 1316-1322.

[11] Hudson, H. Malcolm, and Richard S. Larkin. "Accelerated

image reconstruction using ordered subsets of projection

data." IEEE transactions on medical imaging 13, no. 4

(1994): 601-609.

ILMA Journal of Technology & Software Management - IJTSM Vol. 3 Issue. 2

47

[12] Choi, Keunwoo, György Fazekas, Mark Sandler, and

Kyunghyun Cho. "Convolutional recurrent neural

networks for music classification." In 2017 IEEE

International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 2392-2396. IEEE, 2017.

[13] Pan, Zuozhou, Zong Meng, Zijun Chen, Wenqing Gao, and

Ying Shi. "A two-stage method based on extreme learning

machine for predicting the remaining useful life of rolling-

element bearings." Mechanical Systems and Signal

Processing 144 (2020): 106899.

[14] Negash Rahmani, Amir M., Tuan Nguyen Gia, Behailu,

Arman Anzanpour, Iman Azimi, Mingzhe Jiang, and Pasi

Liljeberg. "Exploiting smart e-Health gateways at the edge

of healthcare Internet-of-Things: A fog computing

approach." Future Generation Computer Systems 78

(2018): 641-658.

[15] Matveev, V. V., and A. P. Bovsunovsky. "Vibration-based

diagnostics of fatigue damage of beam-like structures."

Journal of Sound and Vibration 249, no. 1 (2002): 23-40.

Van Valkenhoef, Gert, Guobing Lu, Bert de Brock, Hans

Hillege, A. E. Ades, and Nicky J. Welton. "Automating

network meta‐analysis." Research synthesis methods 3, no.

4 (2012): 285-299.

[16] Ji, W., Zhang, X., Han, Y., & Zhou, X. " Structural Health

Monitoring and Assessment of Bridges." Journal of Bridge

Engineering (2018): Page numbers: 04017121.

[17] Qiang Wu, Yanmin Zhu, Houbing Song, and Qiao Ye.

" Energy-Efficient TinyML for Internet of Things:

Techniques and Applications" (2022): Publisher: Springer.

[18] S. Kim, K. Lee, K. Park, and Y. Kim. " A Hybrid Machine

Learning Approach for Structural Identification of Large-

Scale Bridges ". Journal of Computing in Civil

Engineering (2020): Page numbers: 04019088.

[19] Li, X., Li, Y., Li, L., Li, G., & Zhang, Y." A machine

learning-based brain activity recognition system for

wearable healthcare devices ". Journal IEEE Access

(2022): Page numbers: 11711-11720.

[20] Khan, A. M., Ahmad, F., & Yousaf, M. H." A

comprehensive review of internet of things architectures,

technologies, and future directions " (2021). Journal IEEE

Access, 9, 47361-47385.

[21] Robert H. Shumway and David S. Stoffer." Time Series

Analysis and Its Applications " (2017). Publisher:

Springer.

