
ILMA Journal of Technology & Software Management - IJTSM Vol. 4 Issue. 1 22

Abstract: Several paradigms come under the tree of
Model-Driven Architecture among which Model-Driven
Engineering (MDE) is a software engineering approach
that enables us to concern about the model rather than the
writing program. Though models are considered to be the
artifacts of the MDE, and designing model at the level of
abstractions reduces the headache of the developer of
platform specificity. With the help of this behavior of
MDE complete view and functionality of the system can
be understood before actually building it. When the
particular model is designed, that model can be
transformed into another model or specific platform
source code. Hence this paradigm reduces the time of
developer of writing large codes and also saves us from
bugs that could occur during the implementation phase
when developers writing the code the program, because a
human can make but computers can’t unless they are
directed to. In this paper, several papers have been
reviewed relating Model-Driven paradigms, that
elaborates model-driven paradigms more specifically
model-driven engineering, and different approaches that
come under the umbrella of Model-Driven engineering
and how they work. The role of code generators has also
been described and their practical demonstration is
presented that how a model of UML sequence diagram is
transformed into source code.

Keywords: Model-Driven Architecture, Model-Driven
Engineering (MDE), source code, Model-Driven
paradigms

INTRODUCTION
With Passage of time, As Software Systems are evolving, they
are becoming more and more complex, and Software
developers are facing number of challenges in the software
development. Reports says that 60% of the software systems
are failed because of lack in implementation which causes
bugs in software systems[1]. There can be number of reasons
for this lack in implementation however one that is very
common is mistakes of the developers and hurry in finding

generic solutions. Although after a lot of hard work of
software developer, the system which he develops, works
only on specific platform though if we want to run it on
different platforms we need to develop it for that system
which need expertise of software developers in that platform
as well. However this platform dependency causes companies
a lot of cost in term of money or time[2]. MDA was released
and standardized by Object Management Group (OMG),
many other model driven paradigms fall under the umbrella
of MDA among all models are considered to be artefacts.
MDE is one of the approach of software engineering, which
suggests us to design models of the particular system, rather
than program in particular language, with an abstraction
level[3]. This approach of designing the model into abstraction
level eliminates the platform dependency and reduce the
headache of the software developer. However this approach
has several other advantages as well, one of which is we can
understand the behavior of the system before actually
implementing it and thus we can know the worth of that
system[14]. When models are designed at abstraction level
than number of transformation can be applied on that specific
model to make it more and more platform specific model and
the finally high level code of particular platform can be
generated. With the help of this approach we can get different
platform specific source codes from 1 model[15]2.

Model-Driven Engineering
Longtime before a de-facto standard was released by Object
Management Group(OMG Group) which was entitled as
“Model Driven Architecture” [4]. The duty of this standard is
to separate the different components based on their platform
dependency level [5]. MDA is architecture containing all the
components of the Model driven paradigm or in other words,
Model-driven Architecture is a super set of all model-driven
paradigms. Such as Model-Driven Engineering (MDE),
Model-Driven Software Engineering (MDSE), Model-Driven
Development (MDD) and Models as well[16].

MDE is a technique of software engineering in which models
are considered as main building blocks, unlike other software
engineering approaches in which programs are the main
artifacts [1]. In the MDE first desired system is first abstracted
into the model and then the number of transformations is
applied into the model making it more and more platform
specified and the finally into machine code of the particular

From Model to Code: A Review of Model-Driven
Paradigms

__

Virtual University of Pakistan1, Sindh Agriculture University Tandojam2, 3, 4

Email: azharkhaskheli@gmail.com

Azhar Ali Khaskheli1*, Saqib Ali Khaskheli2, Anum Amir Khwaja3, Muhammad Yaqoob Koondhar4

ILMA Journal of Technology & Software Management - IJTSM Vol. 4 Issue. 1 23

platform[2]. This behavior of model-driven engineering can
be seen in the following figure[3], that how a model, let’s call
it ‘n’, is transformed from abstraction level into platform
specified level, call it ‘Model 1’ through a number of
iterations and finally source code[3].

Liviu defined MDE as a [5] three-layer process of
transformation of model. At the first layer, the mode is which
Computational Independent Model(CIM) is transformed to
Platform Independent Model(PIM) which is then transformed
into Platform-specific Model(PSM) in Layer three and finally
source code is generated of a specific platform[17].

Model-Driven Development (MDD) comes under the
umbrella of Model-Driven Software Engineering and has a
very limited scope. Model-Driven Development is limited to
layer 3 of Liviu 3 layer approach [5], though it is only
responsible for the transformation from Model to Code.

Besides all the discussion of Model Driven Architecture and
its comprising components, Model is the focal point in all.
The model is an abstract representation of any real-world
entity/ System. It must be clear and well defined if it is not
then it may create problems at later stages. There are 3 main
properties of the model that it must match[15].

•	 A Model is a representation of a system, though it should
be based on something that is already built or is going to
built or it should be completely imaginary[5].

•	 Model is a reduced version of the system, though it
should not contain all properties it has to contain some
properties[5].

•	 A Model always has a relation with the subject though it
should be usable in place of the subject[5].

Modeling Languages
Models are designed using Modelling Languages, there is a
number of modeling languages used for this purpose, some of
them are general-purpose modeling languages while others
are Domain Specific Languages (DSL)[17].

Domain-specific languages are those languages which are
designed by domain experts to capture their requirement and
design the model of their desired domain, an example of such
domain specific languages include[2]
•	 Eclipse Modeling Framework(EMF)[6]
•	 Eclipse Based Unified Modelling Language Tools[7]
•	 Magic Draw[8]
•	 System Modeling Languages (SysML)[9]
Among all these tools EMF is very popular and widely used
because of its simplicity and ease of use. The very most
popular example of General Purpose Modelling Languages
includes Unified Modelling Language(UML) which has
become the de-facto standard of modeling language by Object
Management Group in [12]. UML is used to specify, construct,
visualizes, analyze, and document any project development
or a software system. The UML diagrams help a developer to
create a robust and more secure system in execution. Or UML
well known for, creating objectoriented designs, diagrams,
models, or documentation models.

Model Transformations
Model Transformation is an operation on models that
automatically generates a new model from our selected model
according to some ruled defined [10]. There can be a number
of operations or transformations such as Model to Model
Transformation, Model to Text Transformation, etc.
Model to Model transformation is done in order to reduce the
abstraction levels of model to make it platform-specific, This
activity is limited to Liyiu’s[5] first three layers of layers
approach i.e. CIM to PSM. Model to Text Transformation is
an approach in which graphical model is converted into
textual representation, usually that textually representation is
the source code of the particular programming language, this
transformation simply transforms the PSM model into Code.
Text to Model Representation is the reverse process of Model
to text, this converts textural representation back to model
representation[13].

Code Generation
Code Generation is a type of transformation in which the
model is transformed into textual representation, Code
generators are responsible for these transformations. Code
Generators are programs that create other programs. This
complete process of code generation should be performed
semi-automatic to increase its accuracy. It’s a good practice
that general-purpose parts which are common/standard should
be generated using code generator while domain-specific
parts should be made by developers[12].

ILMA Journal of Technology & Software Management - IJTSM Vol. 4 Issue. 1 24

The behavior of code generation can be seen in the above
figure. Code Generation approaches inputs the subset of
source model which is our desired model to be transformed
into the target which is source code or program, code
generation uses code generation definitions or rules which
helps code generator to transform the source model into
target[13]

Kundu, Samanta, and Mall[12] defined a technique to
transform a UML Sequence Diagram into a source code.
Below is an example of a sequence diagram that is being
transformed[12].

The graph model of this sequence diagram can be shown in
figure.5. There is conditional flow in sequence diagram which
means that if the condition is satisfied then the left side of the
graph model will be executed otherwise right[1].

Source code can be generated from above graph model or a
subset of that model by the help of code generator which uses
transformation rules, those rules are nothing but they just
define how the different component of the graph should be
transformed into source code. An example of transformation
rules can be seen in the following table[2].

The Transformation rules contain a number of rules which
include graphical Notation represented by Model Element
and their corresponding Code. When the above transformation
rule is used with a subset of our sequence diagram graph
model below source code is generated [12].

Target Code
Class Bookregisgter{ FindBook(BookID){
 	 while(i<BookList.length & found=F){
 	 	 found=BookList[i].Match(BookId);
 	 	 }
 	 if(found==T){ 	 	
	 return BookList[i];
 	 	 }
 	 else{ 	 	
	 return null;
 	 	 }
 	 }
}

CONCLUSION

MDA is the father of all model-driven paradigms, among all
model is the key element which is considered to be a very
fundamental building block, that model can be designed using
modeling languages those modeling languages include
domain-specific modeling language and generalpurpose
modeling languages. Unified Modelling Language is
considered to be the de-facto standard of modeling language
which is standardized by OMG and used by many companies
including, Microsoft, IBM, etc. there can be a number of
operations that can be applied on model among which model
transformation is very useful which is used to convert the
model from one representation into another. This
transformation can be applied in the form of code generation
which is used to transform the subset of a model into the
desired source code. In this paper, we saw how different
modeling paradigms relate to each other and how a UML
sequence diagram is converted into source code.

ILMA Journal of Technology & Software Management - IJTSM Vol. 4 Issue. 1 25

REFERENCE
[1] Ali, A., Koondhar, M. Y., Depar, M. H., Maher, Z. A.,

Rind, M. M., & Shah, A. (2021). Framework for
Location Based Attendance System by Using Fourth
Industrial Revolution (4IR) Technologies. International
Journal, 10(3).

[2] Khaskheli, S. A., Pathan, M., Qureshi, B., Khaskheli, A.
A., Ahmed, T., Nizamani, N. N. D., & Dahri, F. (2021).
AI Based Motor Vehicles Detection and Tracking
System Using Smartphone Application. International
Journal, 10(3).

[3] Gurunule, D., & Nashipudimath, M. (2015). A review:
analysis of aspect orientation and model driven
engineering for code generation. Procedia Computer
Science, 45, 852-861.

[4] Staab S., Walter T., Gröner G., & Parreiras, F. S. Model
driven engineering with ontology technologies.
Reasoning Web. Semantic Technologies for Software
Engineering. Springer Berlin Heidelberg; 2010.p. 62-
98.

[5] OMG. MDA Guide version 1.0.1. OMG document
omg/2003-06-01, 2003

[6] Cretu, L. G. (2014). Model Driven Engineering Using
UML. A Pragmatic Approach. ModelDriven Engineering
of Information Systems: Principles, Techniques, and
Practice, 229.

[7] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo
Paternostro. 2008. EMF: eclipse modeling framework.
Pearson Education.

[8] Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri
Mraidha, Sebastien Gerard, Patrick Tessier, Remi
Schneken- burger, Hubert Dubois, and François Terrier.
2009. Papyrus UML: an open source toolset for MDA.
In Proc. of the Fifth European Conference on Model-
Driven Architecture Foundations and Applications
(ECMDA-FA 2009). Citeseer, 1ś4.

[9] Magic, N. (2007). MagicDraw. URL https://www.
nomagic. com/products/magicdraw.

[10] Sparx Systems. 2012. Sparx Systems SysML.
https:⁄⁄sparxsystems.com⁄. (2012). [Accessed:
23⁄03⁄2020].

[11] Kleppe, Warmer J, Bast W. MDA Explained, The Model-
Driven Architecture: Practice and Promise. Addison

Wesley; 2003.

[12] Kundu, Debasish, Debasis S, and Rajib M. Automatic
code generation from unified modelling language
sequence diagrams. Software, IET7.1; 2013.p. 12-28

[13] Knapp, A., & Merz, S. (2002). Model checking and code
generation for UML state machines and collaborations.
Proc. 5th Wsh. Tools for System Design and Verification,
59-64.

[14] España, S., Bik, N., & Overbeek, S. (2019, May). Model-
driven engineering support for social and environmental
accounting. In 2019 13th International Conference on
Research Challenges in Information Science (RCIS) (pp.
1-12). IEEE.

[15] Verbruggen, C., & Snoeck, M. (2023). Practitioners’
experiences with model-driven engineering: a meta-
review. Software and Systems Modeling, 22(1), 111-
129.

[16] Mohamed, M. A., Challenger, M., & Kardas, G. (2020).
Applications of model-driven engineering in cyber-
physical systems: A systematic mapping study. Journal
of computer languages, 59, 100972

[17] Chillón, A. H., Ruiz, D. S., Molina, J. G., & Morales, S.
F. (2019). A model-driven approach to generate schemas
for object-document mappers. Ieee Access, 7, 59126-
59142.

