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Abstract— Complex networks formed by people, cities, 

computers, genes, and financial transactions, etc. as nodes 

and their interdependent associations as links exist in real 

world. Often, multiple links connect two nodes in these 

networks. It is essential in many applications to discover 

shortest path between the nodes. Shortest path problems are 

computation resources intensive particularly the 

computational time, therefore, the shortest path algorithms 

are analyzed to predict their computational time complexity. 

Plethora of literature presents comparative studies of shortest 

path algorithms; however, the compared algorithms provide 

the solutions to dissimilar settings of input network graphs. 

State-of-the-art Dijkstra’s algorithm efficiently solves single 

source shortest path problem for non-negative weighted 

directed graphs. The algorithm selects a node with minimum 

distance from start node and traverse input graph. Different 

techniques used to implement queue resulted in different time 

complexity of variants of Dijkstra’s algorithm. The scope of 

our work is to analyze time complexity of the classical 

Dijkstra’s algorithm variants and highlight the bottlenecks 

that set computational upper bound of their time 

complexities. The outcome of this article is to recap time 

complexity improvements of the Dijkstra’s algorithm 

introduced by various advancements in the data structures. 

This may assist the research to provide some more efficient 

solution for single source shortest path problems. 
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INTRODUCTION 

Complex networks of people, cities, airports, electronic device, 

genes, file servers and financial transactions etc. are very 

common in real life. These networks are formed by a set of nodes 

(independent entities) based upon any of their 

association/interdependency. Often, multiple paths connect one 

entity to another in the networks; therefore, in various 

applications there arises a genuine need to ascertain shortest path 

between entities of a network. A shortest path is a path with a 

minimum total cost among all the existing alternate paths. 

Computation of the shortest path, a scientific activity, depends on 

mathematical modeling of real-life networks [1]. Graph is an 

abstract mathematical model to express complex network models 

in a concise pictorial language with clarity and precision [2]. 
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Graphs contain set of vertices, and set of edges joining the 

vertices; therefore can be transformed in graphs by referring 

to objects as vertices and associations/interdependencies as 

edges, respectively, a sample network of airports is shown in 

Figure 1. 

 

Figure 1. A network of airports (Nodes) as vertices and Fight Time 

(association) as edges. 

The Shortest path algorithms work on input graphs to 

identify an optimal route with a minimum cost from a given 

starting vertex to target vertex, depending on constraints 

posed by the problem being studied [3]. Different approaches 

are implemented to find the minimum distance (cost) path 

and each approach generates different performance aspects. 

Shortest path algorithms are broadly categorized in two 

groups i.e. Single Source Shortest Path (SSSP) algorithms 

and All-Pairs Shortest Path (APSP) algorithms. The SSSP 

algorithms discover shortest path from a start vertex to all 

other vertices, and the APSP algorithms discover shortest 

paths among all connected vertices available in a graph [4]. 

Shortest path algorithms are required in various fields 

including social sciences, biology, chemistry, neuroscience, 

software engineering, Artificial intelligence (AI), security, 

logistics & planning, transportation planning, finance, 

networking, document formatting, compilers, and dataflow 

analysis. They appear as sub-problems of several other 

combinatorial optimization problems as well [5, 6, 7]. 

Shortest path problems are computation resources such as 

memory, bandwidth, or hardware but most often the 

computational time intensive. Literature reviews shortest 

path algorithms from different aspects about the greediness 

for such resources. The scope of our work is to review 

theoretical time complexity of the variants of classical 

Dijkstra’s algorithm for SSSP problems of non-negative, 

weighted directed graphs. This article presents time 

complexity analysis of the variants of Dijkstra’s algorithm. 

The time complexity variations in Dijkstra’s variants is due 

to the use of different data structures. Our work highlights 

the critical reasons causing the variation in time complexity 

achievements of the different variants of the algorithm. The 

methodology applied to accomplish the task within its scope 

is mentioned in Section 2. This paper provides related work 

in section 3, and Section 4 provides theoretical analysis of 

the time complexity of Dijkstra’s algorithm variants. Finally, 

the work is concluded in section 5. 
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RELATED WORK 

Some related work available in contemporary literature is 

stated in this section. 

Kumawat et al. [16] discussed the time complexity of 

various shortest path algorithms. The researcher provided 

time complexity comparison of different solutions for 

shortest path problem available in the literature with 

concluding remarks that shortest path problem algorithms’ 

time complexity needed to be reduced in order to enhance 

their utilization. 

The time complexity of some and classical shortest path 

algorithms is compared in [17].  The work provides classic 

Dijkstra, Bellman-Ford, and Johnson algorithms and 

heuristic Dinitz, Scaling, and Genetic algorithms’ time 

complexity comparisons. However, the competing algorithm 

possess different characteristics.   

Barkund et al. [18] present a survey on shortest path 

algorithms. The survey covered SSSP and APSP problems 

algorithms. The survey compared many attributes of the 

algorithms but time complexity attribute is not included in 

the comparison table. 

Verma et al. [19] provided empirical performance 

comparison of four Dijkstra’s algorithm variants, i.e. the 

simple array data structure, Fibonacci heap, Binary heap and 

Bi-directional implementation variants. The research 

concluded that Bidirectional Dijkstra’s algorithm 

outperformed the competing variants empirically. The 

researchers mentioned the theoretical time complexities of 

simple array, the Fibonacci, and the Binary heap variants, 

however, did not  mentioned the theoretical asymptotic time 

complexity for the Bi-directional variant of Dijkstra’s 

algorithm. It may be because of the reason that the 

theoretical time complexity of Bi-Directional 

implementation will be similar to either Binary or Fibonacci 

heap, depending on either of the data structures used. 

Qureshi et al. [20] provided theoretical time complexity of 

three variants of Dijkstra’s algorithm i.e. simple array and 

the Fibonacci and Binary heap variants. The article 

discussed the time complexity of individual heap operations 

and data structures, and reviewed and discussed the 

techniques to understand the impact of efficient data 

structures on time complexity improvements in Dijkstra’s 

algorithm. However, did not included the other variants of 

Dijkstra’s algorithm. 

 

METHODOLOGY 

Plethora of literature presents comparative studies of 

shortest path algorithms. Eneh & Arinze [8] presented 

comparison amongst the main shortest path algorithms, 

shown in Table 1. Similar type of time complexity 

comparisons are provided in [9, 10, 11, and 12] as well. 

However, it is pertinent to mention that the algorithms 

compared in Table 1 provide solutions to different input 

graph settings. Therefore, it seems inappropriate to compare 

the characteristics of the algorithm providing solutions to 

different kinds of problems. Well-known Dijkstra’s 

algorithm [13], a labeling method, addresses SSSP problem 

of directed and non-negative weighted graphs, since its 

inception [14 and 15]. Therefore, we are comparing the time 

complexity feature of variants of Dijkstra’s algorithm, as all 

its variants solve identical problems. 

 

 

 

Table 1. Time complexity comparison of the shortest path algorithms 

Algorithms’ 

Name 

Weig

ht 

SSSP/AP

SP 

Time Complexity 

Dijkstra’s +(ve) SSSP 𝐎( 𝑬 + 𝑽 𝒍𝒐𝒈 𝑽)  

Bellman-

Ford 

−(ve) SSSP 𝐎( 𝑽 ∗  𝑬)  

Floyd-

Warshall 

−(ve) APSP 𝐎(𝑽𝟑) 

A* +(ve) SSSP  Depends on f(h) 

Johnson's −(ve) APSP О(V2 log V + VE) 

Prim's +(ve) SSSP 

/APSP 
𝐎( (𝑽 +  𝑬) 𝒍𝒐𝒈 𝑽)  

Kruskal's +(ve) SSSP 

/APSP 
𝐎(𝑬 𝒍𝒐𝒈 𝑬)  

 

 

THEORETICAL TIME COMPLEXITY ANALYSIS OF 

DIJKSTRA’S ALGORITHM 

Pseudo-code of Dijkstra’s Algorithm 

 

DIJKSTRA’S ALGORITHM  

DA (Graph G, Source s) 

1 for each vertex u ∈ V 

2 u.π = Nil           IG-A  

3 u.d = ∞{unknown / unreached} 

4 s.d = 0 

5 S ← ∅  

6 Q ← G.V     IG-B 

7 while Q ≠ ∅ 

8 Delete-min form the Q (returns a  

    vertex with minimum u.d)      IG-C 

 

9 S = S Ս [u] 

10 for each vertex v ∈ G.Adj[u]    

                                 IG-E 

11 if v.d > u.d + ƒ(v, w)  (f(v, u):  

      a weight function for edge(u, v))  

12 v.d = u.d + ƒ(v, w)             IG-D          

13 v.π = u 

14 Rearrange Q 

 

 

 

Primitive operations, available in pseudocode, are grouped to 

estimate running time growth rate of Dijkstra’s algorithm [21] 

for theoretical analysis of its time complexity. Instructions 

Groups (IG) are marked as IG-A, IG-B and so on as shown 

Pseudocode. The IG-A initializes shortest-path-estimates (u.d) 

and predecessors (u.) in О(V) time. IG-B builds minimum-

priority-queue. The selection of a node with minimum values 

for subsequent iteration is performed at IG-C. Scanning of 

adjacent vertices for selected vertex Decrease-key operation is 

performed at IG-D for a total of |E| times. It is important to 

note that IG-C and IG-E operations are performed inside 

while loop at IG-E. Therefore worst-case cost will be 

computed as: 

 T(V) = IG-A + IG-B + IG-E (IG-C) + IG-E (IG-

D) 
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Time Complexity Analysis 

The breadth first search (BFS) technique best suits for 

computing the shortest path in non-weighted or identical 

weighted edges input graphs. Whereas, a sorted list (priority 

queue) is essential in arbitrary weighted graphs to find the 

shortest path, efficiently. Binary Search Tree (BST), linked 

lists, arrays, and heaps data structures provide mechanism to 

implement priority queue. Nevertheless, heaps are 

considered efficient for priority queue implementations. 

Dijkstra’s algorithm solves shortest path problem for input 

graphs with arbitrary edge weights, thus select a node with 

smallest distance at its every iteration. Efficient asymptotic 

time behavior of Dijkstra’s algorithm correlates with 

arrangement of vertices and selection of a vertex with 

smallest distance value. 

Dijkstra’s algorithm variants implement priority queue 

using different methods for better asymptotic performance. 

Variations in the running time complexity of Dijkstra’s 

algorithm depend on the data structures utilized for priority 

queue implementations. For example, in simple array based 

implementation, selection of vertices with minimum 

distance label will cost О(V2) operations of priority queue 

for |V| vertices, and scanning of adjacent vertices will cost 

|E| operations for |E| edges, in worst-case scenario. The total 

asymptotic cost of the algorithm will be О(V2 + E) [4].  

The heap data structure based priority queue implementation 

in Dijkatra’s algorithm correlates the efficient asymptotic 

time behavior with following heap operations:  

 Insert: inserts new element in queue in an ordered 

sequence,  

 Delete-min: retrieves minimum value element and 

subsequent delete,  

 Decrease-key: modifies values of an element and 

rearrange the queue. 

Every heap variant has different cost for these operations 

thus causes the varying asymptotic behavior of Dijkstra’s 

algorithm variants. 

Array Indexed-by-Vertex 

Let’s represent graph G(V, E) of set V of vertices and set E of 

edges,  as an adjacency matrix where the element A[i,j] holds 

information about edge (i,j). Priority queue of vertices is 

implemented using array indexed by numbers from 1 to |V|, then 

updating of v.d for each neighbor of node i will take О(1) time. 

However, the time taken at IG-C to select a node with smallest 

distance from the priority queue would cost О(V) time within each 

iteration of the while loop, as there is 1 iteration for each vertex 

therefore there would be |V| number of iteration that will lead to 

О(V2) time complexity. Scanning of neighborhood at each vertex 

takes О(E) time. Thus, the total time complexity of an algorithm 

would be the sum of running time of each instruction group for a 

graph of |V| vertices and |E| edges [4, 32]: 

 𝑇(𝑉) = O(𝑉) + O (𝑉) + O(𝑉 O(𝑉)) + O(𝐸) (adjacency 

scanning may reach to E) 

 𝑇(𝑉) = O(𝑉2 +  𝐸) 

 О(V2) according to the order of the growth [4]. 

Binary heap 

The graph G, defined above, is represented as adjacency list and 

Binary heap data structure is utilized to implement priority queue. 

All vertices of the graph will be traversed in О(E) time. The 

Binary heap, such as [22], takes О(log V) for each Delete-min 

and Decrease-key operations on a set with |V| vertices, so, the 

maximum О(E log V)  operation will be required for Decrease-key 

in worst-case [23, 24]. The overall time complexity would be: 

 𝑇(𝑉) = O (𝑉) + O (𝑉 𝑙𝑜𝑔 𝑉) + O(𝑉 O(𝑙𝑜𝑔 𝑉)) +

O(𝐸 O(𝑙𝑜𝑔 𝑉))  

 𝑇(𝑉) = O(𝑉 𝑙𝑜𝑔 𝑉) + O(𝐸 𝐿𝑜𝑔 𝑉) ((E log V) for 

Decrease-key of each adjacency) 

 O(𝐸 𝑙𝑜𝑔 𝑉)  

Fibonacci heap 

Fredman and Tarjan [25,30], implemented priority queue with 

Fibonacci heap data structure. Fibonacci heap cost amortized О(1) 

for Insert and Decrease-key operations, however, Delete-min cost 

О(log V) for each operation on a heap of |V| vertices. The maximum 

size of a heap would be |V|-1, for a graph with V vertices. The 

Fibonacci heap will take О(V) for Insert and (V) for heap operations 

and О(V + E) time for other tasks. Thus running time of Fibonacci 

heap variant of Dijkstra’s algorithm is reduced to [4, 25, 31]: 

 

 T(V)=O(V)+O(V)+ O(V O(log V))+O(E) (E times 

О(1) for Decrease-key) 

 T(V)= O(V log V)+O(E) 

 O(E+V log V) 

d-ary heap 

d-ary heap is an extension of Binary heap data structure. A parent 

has two children in the Binary heap, whereas in d-ary a parent has d 

number of children, thus the height of V element tree is reduced to 

О(logd V). d-ary heap based priority queue cost О(log V / logd) for 

each Insert and Decrease-key operations and О(d log V / logd) for 

Delete-min operation, therefore the total running time for |V| 

vertices is [26]: 

 𝑇(𝑉) =  O(𝑉) + O (
𝑉 𝑙𝑜𝑔 V

log 𝑑
) + O (𝑉. 𝑑 O (𝑙𝑜𝑔

V

log 𝑑
)) +

O ((𝐸)O (𝑙𝑜𝑔
𝑉

log 𝑑
)) 

 𝑇(𝑉) =  O (𝑉. 𝑑 O (𝑙𝑜𝑔
V

log 𝑑
)) + O(𝐸 (𝑙𝑜𝑔

𝑉

log 𝑑
)) (E 

times log V / logd for Decrease-key of each adjacency) 

 O(𝑉. 𝑑 ) + 𝐸 (𝑙𝑜𝑔
𝑉

log 𝑑
))  

Radix heap 

Originally, Johnson [27] proposed one-level Radix heap data 

structure. The heap achieved O(𝐸 𝑙𝑜𝑔 𝑙𝑜𝑔 𝐶 +
𝑉 𝑙𝑜𝑔 𝐶 𝑙𝑜𝑔 𝑙𝑜𝑔 𝐶)) upper bound time complexity for Dijkstra’s 

algorithm. Ahuja et al. [28], with a slight amendment in the 

Johnson work, introduced a collection of buckets in radix heap and 

cost О(log C) Insert and Delete-min operations and takes О(1) cost 

for Decrease-key operation thus reduced Dijkstra’s algorithm upper 

bound time complexity to: 

 𝑇(𝑉) =  O(𝑉) + O(𝑉 𝑙𝑜𝑔 C) +

O(𝑉 O(𝑙𝑜𝑔 𝐶)) + O(𝐸 O(1)) 

 𝑇(𝑉) =  O(𝑉 𝑙𝑜𝑔 C) + O(𝐸) 

 O(𝐸 + 𝑉 𝑙𝑜𝑔 C)  
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Integer priority queues 

Delete-min operation cost О(log log V) time and other operations 

cost О(1) in integer priority queue [29], the time complexity is 

achieved as: 

 𝑇(𝑉) = O(𝑉) + O(𝑉) + O(𝑉 O(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑉)) +

 𝑂(𝐸 𝑂(1)) 

 𝑇(𝑉) = O(𝑉 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑉) +  𝑂(𝐸)  

 O(𝐸 + 𝑉 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑉) 

Time complexities of the variants of Dijkstra’s algorithm 

using different data structures for priority queue 

implementation are appended in Table 2: 

 

Table 2. Time complexity comparison of Dijkstra’s algorithm variants 

 

Variant 
Total running time 

complexity 

Node-indexed array О(V2) 

Binary heap O(𝐸 𝑙𝑜𝑔 𝑉)  

Fibonacci heap O(𝐸 + 𝑉 𝑙𝑜𝑔 𝑉) 

d-ary heap О(V.d + E log V / logd) 

Radix heap O(𝐸 + 𝑉 𝑙𝑜𝑔 C) 

Integer priority queue O(𝐸 + 𝑉 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑉) 

 

CONCLUSION 

Several algorithms solve shortest path problems. These algorithms 

are analyzed theoretically to predict their computational time 

complexity. The literature presents comparative studies on time 

complexities of shortest path algorithms; however, the competing 

algorithms solve problems of input graphs with different settings. 

This paper presents review of well-known Dijkstra’s algorithm for 

SSSP problems of non-negative, weighted directed graphs. 

Dijkstra’s algorithm select a node with smallest distance at its 

every iteration. Efficient asymptotic time behavior of Dijkstra’s 

algorithm correlates with arrangement of vertices and selection of 

a vertex with smallest distance value. Simple array based 

arrangement of vertices led to an upper bound time complexity of 

О(V2) due to selection of vertices with smallest distance values. 

Heap data structures based priority queues provided flexibility to 

researchers to linearize the time complexity of the algorithm to 

О(𝐸 + 𝑉 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑉) and О(𝐸 + 𝑉 𝐿𝑜𝑔 𝑉). Variants of Dijkatra’s 

algorithm utilized different heaps for priority queue 

implementations. The dissimilarities in time complexity of 

Dijkstra’s algorithm variants is because of difference in cost of 

Insert, Delete-min and Decrease-key operations of different heaps 

that is a critical reason causing variations in the time complexity 

achievements of different Dijkstra’s algorithm variants. 

Advancement in data structures used for queuing purposes or any 

proposal for reductions in primitive operations may reduce 

running time cost of the algorithms and in turn may result in better 

solution of single source shortest path problem. 
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