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Abstract— Hand gesture-based text input can be used as an 

easy and more natural way of human-computer 

interaction, especially in AR (Augmented Reality) and VR 

(Virtual Reality) immersive environment. We present 

GDTII (Gesture-Driven Text Input for Immersive 

Interfaces), a novel approach that utilizes both static and 

dynamic hand gestures to facilitate an efficient and 

accurate text entry. The proposed system works in three 

essential steps: 1) A hand is recognized from the original 

RGB video 2) A hand segmentation model based on 

adaptive background subtraction is used and 3) Trajectory 

classification for gesture recognition is done using deep 

learning-based models. Static gestures as well as dynamic 

hand movements are identified by a CNN and optimized 

convex hull trajectory-mapping algorithm. Then, the 

extracted trajectories are processed so that the network 

reconstructs the handwritten character, which goes 

through a character recognition network and, consequently, 

text generation. The proposed system is thoroughly tested 

on real-world datasets, obtaining higher classification 

accuracy as well as proving to be more resilient against the 

variety of lighting conditions and has a better real-time 

performance compared to traditional gesture recognition 

approaches. The results show that GDTII is a practical and 

reliable solution for gesture-driven text input and enables 

effortless interaction in AR/VR environments and other 

scenarios that need non-contact text entry. 
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INTRODUCTION 

Over the last few years, immersive technologies like 

Augmented Reality (AR) and Virtual Reality (VR) became a 

buzzword and revolutionized the user experience in a digital 

ecosystem. However, AR/VR wearable devices do not have the 

standard input methods such as keyboards, mice, and 

touchscreens that they can rely on, leading to the need for novel 

and intuitive input mechanisms. This also led to extremely 

progressive textual input mechanics (speech recognizance, air 

writing) [1], which unfortunately are still not the relining 

standard in the ecosystem. Nonetheless, noise from the 

environment (interference) and privacy concerns make speech-

based input an unreliable tool for real-world interaction. Also, 

people who are deaf or have speech impairment need different 

input methods. 
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In this scenario, hand gesture-based text input appears as a 

potential solution, which is a low-cost, secure, reliable, and 

user-friendly interaction system for immersive devicea. 

Previous approaches have suggested methods to capture 

features for efficient AR/VR communication through gestures 

[2]. A Fiducial marker for fingertip tracking: Some of these 

methods use fiducial markers [3] (intelligent visual tags) which 

are attached to the tips of the fingers and tracked with some 

visual system to provide real-time accurate position of the 

fingertips. Though they have made significant progress, these 

tools come with challenges like reliance on external hardware, 

lack of user comfort, and limited flexibility in various scenarios. 

We present GDTII (Gesture-Driven Text Input for Immersive 

Interfaces), a relatively low-cost and energy-efficient system 

for typing with hands gestures for AR/VR wearable devices. In 

contrast to previous studies which relied on sensors or markers, 

our method allows hand gestures recognition and trajectory 

tracking solely based on a monocular camera. It detects 

gestures by capturing a hand image, optimizing the background 

area, and deciding the hand gestures using a small convolutional 

neural network (CNN). Dynamic hand movements are tracked 

using a convex hull algorithm that extracts a set of trajectories, 

and a deep learning model is subsequently applied to 

reconstruct the handwritten character. 
The rest of this paper is organized as follows: In Section 2, we 
present a thorough review of existing gesture-based text input 
methods. Section 3 describes the proposed method for 
preparation dataset, model architecture, and recognition 
methods. In section 4 we present experimental results along with 
comparisons and the relatively leading performance of the 
suggested system. Section 5 concludes the paper and discusses 
future research directions. 

LITERATURE REVIEW 

Hand gesture recognition has been widely researched for 

AR/VR text input. Marker-based approaches [4], sensor-based 

systems [5] and vision-based techniques [6] among many others 

have been developed for hand gesture capture, tracking and 

classification. The present section discusses relevant elements 

from the field literature divided by the approaches they are 

mainly based on. 

A. The Current State of Marker-Based Gesture Recognition 

The marker-based techniques are utilized to track gestures by 
using fiducial markers placed on users' fingers. Buchmann et al. 
[7] proposed fingARtips which allows users to interact with 
virtual objects through hand gestures. In this method, they used 
fiducial marks placed on each fingertip, allowing them to 
accurately trace the hand movement. But the primary 
disadvantage is that if the users are not wearing the markers, the 
system does not work, making it unrealistic for use in the real 
world. 

Reifinger et al. [8] introduced another marker-based system 
using infrared (IR) markers. This system provides users with IR 
(infrared) markers on their fingers that are tracked and used to 
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generate a virtual hand model, suited for AR/VR usage. 
Although useful academically, this method is not 
implementable in the wild without appropriate hardware and 
additional setup. 

B. Gesture Recognition Approach Based on Sensor 

Sensor-based methods utilize embedded motion sensors e.g., 
accelerometers, and gyroscopes in wearable devices to acquire 
hand movements. 

An illustrative example would be the air-writing system 
presented in [9], where users are able to write characters in open 
air as they follow motion sensors attached to their hands. 
Secondly, this method mainly uses a Support Vector Machine 
(SVM) to classify gestures and a Hidden Markov Model (HMM) 
to output the text representation from the obtained sensor data. 
Though precise, its susceptibility to the noise from the sensors 
and the discomfort for the user make it impractical for prolonged 
periods of use. 

Other than that, a motion sensors-based system, TypingRing 
[10] is another wearable ring that allows users to type on any 
surface by embedding motion sensors in the ring. Though this 
method can be applied to other devices, it is reliant on external 
power in addition to outside hardware, which could limit the 
scope of its adoption. 

C. Gesture Recognition based on only Vision 

Vision-based approaches use cameras or vision systems to detect 
hand gestures with no need for any external markers or sensors. 
They provide an intuitive and unforced method of interacting 
with AR/VR technologies. 

A separate, camera-based virtual keyboard was proposed in 
September 2023 for a typing in AR/VR interface [11]. The 
system generates a keyboard onto an AR/VR environment, 
users can type by just tracking finger movements. Character 
recognition is performed using local feature vectors extracted 
by optical flow analysis and an SVM classifier. However the 
system needs a fixed position of the keyboard, thereby it offers 
no flexibility in the region outside the keyboard, as the hand 
moves out of the keyboard position. 

The second one is on vision-based techniques such as deep 
learning based handwritten text detection. Their CNN-based 
method [12] preprocesses their dataset by extracting filters for 
its data and achieves an accuracy of 87.1% using the EMNIST 
dataset. Like [13], a Deep Neural Network (DNN) model in [14] 
consists of several autoencoders followed by a softmax layer, 
with an accuracy of 90.4%. While these methods offer high 
accuracy for handwritten text recognition using deep learning, 
they are mostly trained on structured datasets instead of the 
dynamic sign and vision states in immersive systems. 

D. Challenges and Research Gap Summary 

Despite the advancements in gesture-driven text input methods, 
existing solutions face several limitations: 

 Marker-Based Methods: Require fiducial or infrared 
markers, which are impractical for real-world use. 

 Sensor-Based Methods: Depend on external devices like 
motion sensors or rings, which introduce hardware 
constraints and discomfort. 

 Camera-Based Virtual Keyboards: Lack adaptability, as they 
require users to type within a predefined area. 

 Deep Learning-Based Recognition: Effective for structured 
handwriting recognition but not optimized for real-time 
gesture-based text input in immersive environments. 

E. Our Proposed Solution 

To address these limitations, we introduce GDTII (Gesture-
Driven Text Input for Immersive Interfaces), an entirely vision-

based system that needs neither external markers, sensors, or 
other hardware. In our method, we utilize a monocular camera 
to: 

 Real-time hand gestures capturing. 

 Background Subtraction: Optimized for hand region 

segmentation 

 CNN model for static gesture recognition. 

 Utilize a convex hull-based algorithm to track dynamic 

hand movements. 

 Transform trajectories into text input using a trained deep 

learning model. 
To overcome these challenges, we propose a compact, robust, 
and low-latency gesture-driven AR/VR text-input method that 
utilizes a new open-source AR toolset to address the issues 
highlighted in existing approaches. 

METHODOLOGY 

The motivation for the implementation of this system is focused 
around the growing usage of AR/VR wearable devices and the 
lack standard input peripherals, like keyboards and 
touchscreens, unlike classical computer systems. Instead, they 
use new interaction techniques, such as voice commands and 
gesture-based controls. On the other sensors, speech 
recognition systems are prone to ambient noise, security issues, 
and in many real-life cases, they are simply not as dependable. 
Moreover, hearing and speech impaired people need alternative 
ways for interaction in AR/VR systems. Taking these aspects 
into account, the hand gesture-based text input system emerges 
as a more secure, strong and versatile solution as shown in 
Figure 1. 

In this section, the proposed system architecture is described, 
which is designed to work solely on monocular camera only, 
without requiring any additional sensors or hardware. The 
proposed methodology consists of three primary components: 
hand detection and segmentation, hand gesture recognition and 
tracking, and recognition of the entered text. Each of these 
elements is explained in the next subsections. 

 
Figure 1: Shows the proposed model 

F. Hand Segmentation 

The first two logical stages of any vision-based gesture 
recognition system are the detection and segmentation of hands. 
Many computer vision models have been introduced for this 
application, deep-learning shaped models such as YOLO (You 
Only Look Once) [15] and SSD (Single Shot MultiBox 
Detector) [16] are two of them. Although these models have 
high accuracy, they are computationally intensive and may not 
be applicable for real-time running on limited-resource AR/VR 
hardware. To overcome this problem, we developed a more 
efficient model in this study that implements an upgraded 
version of the Gaussian Mixture-based Background and 
Foreground Segmentation Algorithm (MOG2) [17]. 
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MOG2 is a background subtraction approach that detects 
moving bodies separated from the background based on 
modeling every pixel as a combination of Gaussians. This 
method is more robust against changes in illumination and 
environment thus robust for hand detection in AR/VR. 
Conversely, traditional segmentation methods like HSV color 
space-based segmentation and edge detection using Canny 
algorithm perform poorly due to their sensitivity to background 
changes and the variability of human skin colors. 

Contour extraction and Minimum Bounding Rectangle (MBR) 
[18] are used for further refinement after hand detection. This 
segment of code helps to ensure we are only passing in the hand 
contour after rounding after processing in our not tracking [but 
freely moving] detection area to reduce noise and improve our 
segmentation. This enhanced segmentation offers a robust and 
computationally economical solution for real-time hand-
background separation. 

G. Identification and Monitoring of Hand Gestures 

In this, we first segment the hand and then use skeletonization 
and binding boxes to recognize and track hand movements. The 
proposed system works to recognize five different hand 
gestures, each corresponding to a different function. 

1. Initial State Gesture – Represents the state before the input 

of any text. 

2. State Gesture — Activates a pull recording of the hand 

trajectory. 

3. Delete State Gesture – Users can erase the last character or 

input. 

4. Send State Gesture – To confirm and send the handwritten 

text for recognition. 

5. Pause State Gesture – Pauses the input without disposing 

of previously added items. 
A lightweight convolutional neural network (CNN) model is 
developed to enable real-time gesture recognition. This model is 
mobile and AR/VR friendly as opposed to traditional deep CNN 
architecture which typically requires high computational 
resources. The model has 10 layers as shown in Figure 2, 
compact architecture includes: 

 6 convolutions (3×3 kernel) feature extractors. 
 3 Max-Pooling Layers (2×2) — for dimensional reduction. 
 Fully Connected Layer (1024 neurons) for classification. 
 Softmax Layer for Output of Gesture Classification. 

 
In order to adapt the recent changes while still being easy to 
compute, we use ReLU (Rectified Linear Unit) activation after 
every convolutional layer. To enhance robustness against hand 
shape and orientation variability, the network is trained on a 
hand gesture dataset obtained from 10 different users. 

 

Figure 2: The network diagram of the Light Weight CNN used for 
gesture recognition 

 

Hand Tracking Using Convex Hull Algorithm 

The system then tracks the hand movements to be informed 
when the gesture is recognized. We use the Convex Hull 
Algorithm to segment and recognize the hand to track it. Using 
this method, we can track the trajectory of hands instantly 
without needing additional hardware like fitted gloves or motion 
detectors. 

It is then saved as a sequence of (x, y) coordinates, a spatial 
representation of how the character was handwritten. The 
trajectory now feeds into the next step: recognizing handwritten 
text. 

H. Input Text Recognition 

As the growing need for real-time handwriting recognition on 
mobile and AR/VR platforms, compact but accurate neural 
network architectures are in demand. Due to the limitations of 
AR/VR devices, a variant of MobileNet is used for character 
recognition. MobileNet is another Deep Learning model which 
is built for Mobile, & it works by using depth-wise separable 
Convolutions to achieve lesser computations without 
compromising on accuracy. 

Modified MobileNet Architecture 

A modified version of the MobileNet architecture is used here 

specifically for handwritten character recognition. The 

components of the model are: 

 Input Layer: Receives a 28×28 grayscale image of a 

handwritten character. 

 Convolutional Layers: The initial convolutional layer 

identifies vital features from the input image. 

 Depthwise Separable Convolutional Layers: Which 

replaces the usual convolutions gaining computational 

power without a loss of accuracy. 

 Average Pooling Layer: Summarizes information from the 

feature maps. 

 Fully Connected Layer: Maps features to character 

classes. 

 Softmax Output Layer: Classifies across the EMNIST 

character set. 

 

Depthwise Conv2D is also a type of filter, but the difference lies 

in the fact that it performs 2D convolutions on each channel 

separately, which results in significantly fewer parameters and 

lower computational cost. Mathematically the depthwise 

convolution operation is described in Eq 1 and Eq 2: 

 

 𝐷𝑊𝑘,𝑙,𝑚 = ∑ 𝐾𝑖,𝑗,𝑚

𝑖,𝑗

∙ 𝐹𝑘+𝑖−1,   𝑙+𝑗−1,   𝑚 (1) 

where: 

 KKK represents the depthwise convolutional kernel, 

 FFF is the input feature map, 

 mmm denotes the filter index. 

 

 
𝐷𝐾 ∙  𝐷𝐾 ∙ 𝑀 ∙ 𝐷𝐹 ∙ 𝐷𝐹  

 
 

(2) 

where: 

 DKD_KDK is the kernel size, 

 MMM is the number of input channels, 

 DFD_FDF is the spatial dimension of the input feature 

map. 

 

Training and Evaluation 

Training is performed on EMNIST dataset which is a set of 
handwritten alphabets. You are row with bag techniques to 
improve the generalization. The training process employs: 

 Adam optimizer for effectively updating weights 

 Classifier cross-entropy loss function. 

 Batch normalization: to stabilize the learning. 

 Dropout regularization to avoid overfitting. 

Input Conv2D Conv2D
Conv2D Conv2D

Conv2D Conv2Dmaxpool2D maxpool2D
maxpool2D

FC

softmax
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The modified MobileNet provides a good trade-off between 
accuracy and memory usage and enables real-time handwriting 
recognition on AR/VR devices. 

SYSTEM PIPELINE 

How the system as a whole works: 

1. Hand Segmentation: MOG2 and contour-based filtering 
helps detect and extract the hand from the background. 

2. Gesture Recognition: The lightweight CNN determines the 
hand gesture and categorizes it into one of the five 
previously defined states. 

3. Trajectory of Hand Movement capturing by Convex Hull 
Algorithm: Hand Tracking 

4. Character Recognition: The trajectory is input to the 
MobileNet-based model to classify the character written. 

5. Output Generation: Display the recognized characters in 
AR/VR interface. 

RESULTS AND DISCUSSION 

We validate the proposed system in a number of experiments for 
hand gesture recognition and handwritten text input for AR/VR 
devices. This part presents the experimental configuration, data 
preprocessing, model training, evaluation metrics, and 
comparison with other methods. 

I. Experimental Framework and Data Collection 

Experiments are done on the following system specs: Intel 
Core i7 7700K, Nvidia GTX 1050Ti, 16GB RAM, Windows 
10. The implementation is done in Python, using Keras and 
TensorFlow deep learning frameworks for training and 
evaluation of the model. 

The hand gesture recognition dataset was self-collected from 10 
different users and included five distinct gestures. 

 intial state (neutral position, waiting for input) 

 Input state (gesture to start writing) 

 Stop state (gesture to pause writing) 

 Send state (gesture to send text to the system) 

 Delete state (gesture to erase the previous input) 

All actions above were made by each user in 10 diverse 
environmental situations, varied by illumination, background 
and distance from the camera. A total of 500 images were 
collected; 400 images for training and 100 for testing. Adding 
noise, rotation, flip, and changing the contrast of images, were 
also used to increase the dataset and to allow the model to 
generalize better. 

 

Figure 3: The gesture classes from the self-collected dataset 

For text recognition, the EMNIST dataset is used, which 
consists of 62 classes: uppercase and lowercase English 
alphabets along with digits (0–9) The dataset has more than 
145,000 training samples and 24,000 test samples. The images 
are 28 × 28 pixels in grayscale, hence it is used in glad based 
acknowledgment assignment. 

 

Figure 4: EMNIST dataset of Character Recognition 

Figures 3 and 4 show sample images from the dataset obtained 
from self-collection and the EMNIST dataset. 

J. System Workflow & Processing Steps 

The proposed system includes the full pipeline consisting of 

these steps: 

 

1) Hand Detection and Background Subtraction 

 

The MOG2 (Mixture of Gaussian 2) algorithm is utilized to 

segment the background, isolating the hand from the 

background. This approach also exhibits significant robustness 

to lighting variances or backgrounds compared to threshold-

based segmentation approaches or approaches based on 

filtering based on the HSV color space. In Figure 5, the output 

of this step can be seen, as follows: 

 (a) Represents the RGB image input. 

(b) Shows the hand-extracted image after background 

subtraction. 

 
 

Figure 5: The output of the background subtraction. (a) the input RGB 

image (b) the result of the background subtraction 

 

2) Hand Gestures Recognition and Tracking 
The hand segmentation is then followed by a process to find the 
contour of the detected hand and a MBR process to plot the hand 
in a bounding box. Next, the hand image is provided to the 
Lightweight CNN model for the Gesture classification. 

To track the trajectory of the input state gesture, a convex hull 
algorithm is used to detect and track fingertips in real-time. The 
trajectory of the writing gesture is recorded and processed as an 
air-drawn character, which is then fed into the text recognition 
model for final classification. The result of finger tracking and 
convex hull detection is illustrated in Figure 6. 

 

Figure 6: The output of the convex hull with tracking of the fingertip for 
the writing process 
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3) CNN Based Text Recognition Using MobileNet 

 
The trajectory is recorded, it is then resized to a 28×28 grayscale 
image and passed to the modified MobileNet architecture. The 
MobileNet optimized model is a lightweight model produced 
from the research results focused on depth-wise separable 
convolutions, which would provide better performance over the 
normal model for text detection on the screen and relevant 
applications. 

K. Performance Evaluation 

1) Accuracy of Gesture Recognition Model 
The self-collected dataset was used to train Lightweight CNN 
model and evaluation was done using accuracy, precision, recall 
and F1-score. This hand gesture recognition system achieved an 
excellent accuracy of 96.12% under various various conditions 
as shown in Figure 7. 

 

 

Figure 7: Graphs shows model training vs validation accuracy and loss 

2) Text Recognition Model Accuracy 
The modified MobileNet was then trained on the EMNIST 
dataset, producing an accuracy of 94.31% which again outshines 
previous state-of-the-art [19-24] results. We present the 
performance comparison with the other models in Figure 8 
which all validate the superior performance of our proposed 
model. 

 

Figure 8: The text recognition comparison between our model and 
other models using the EMNIST dataset 

L. Comparative Analysis with Existing Methods 

To evaluate the practical usability of the proposed system, we 
compare it against existing potential methods of air-writing and 
AR/VR text input as shown in Figure 9. It was compared based 
on two factors: 

 Portability (Ease of integration with AR/VR devices) 

 Learning Curve (Ease of user adaptation to the system) 

 
Figure 9: Portability and Learning Curve comparison between our method 

and other methods 

CONCLUSION 

This study presented a lightweight CNN-based hand gesture 

recognition system trained on a self-collected dataset under 

diverse weather conditions. The model demonstrated excellent 

performance, achieving an accuracy of 96.12%, with high 

precision, recall, and F1-score, ensuring reliable gesture 

classification. The results indicate the model’s robustness and 

effectiveness in real-world scenarios, making it suitable for 

applications such as AR/VR interaction, sign language 

translation, and smart device control. Future work will focus on 

optimizing the model for real-time deployment on mobile and 

embedded systems, improving efficiency without 

compromising accuracy. Additionally, expanding the dataset 

with more complex gestures and varying environmental 

conditions could further enhance generalization and usability. 

REFERENCES 

[1] W. Barfield, Fundamentals of Wearable Computers and Augmented 
Reality, 2nd ed., Boca Raton, FL, U.S.: CRC Press, 2016. 

[2] Maitlo, N., Noonari, N., Ghanghro, S. A., Duraisamy, S., & Ahmed, F. 
(2024, April). Color Recognition in Challenging Lighting Environments: 
CNN Approach. In 2024 IEEE 9th International Conference for 
Convergence in Technology (I2CT) (pp. 1-7). IEEE. 

[3] M. S. Hawley et al., "A Voice-Input Voice-Output Communication Aid 
for People With Severe Speech Impairment," in IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp. 23-31, 
Jan. 2013 

[4] N. Maitlo, N. Noonari, K. Arshid, N. Ahmed and S. Duraisamy, "AINS: 
Affordable Indoor Navigation Solution via Line Color Identification 
Using Mono-Camera for Autonomous Vehicles," 2024 IEEE 9th 
International Conference for Convergence in Technology (I2CT), Pune, 
India, 2024, pp. 1-7, doi: 10.1109/I2CT61223.2024.10544260. 

[5] V. Buchmann, S. Violich, M. Billinghurst, and A. Cockburn, 
“FingARtips: gesture-based direct manipulation in augmented reality,” in 
2nd International Conference on Computer Graphics and Interactive 
Techniques in Australasia and South-East Asia (2004), pp. 212–221 

[6] C. Amma, M. Georgi, and T. Schultz, “Airwriting: a wearable handwriting 
recognition system,” Pers. Ubiquitous Comput. 18(1), 199–203 (2014). 

[7] M. Higuchi and T. Komuro, “Recognition of typing motions on AR typing 
interface,” in 16th International Conference on Mobile and Ubiquitous 
Multimedia (2013), pp. 429–434. 

[8] S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim, “TypingRing: a 
wearable ring platform for text input,” in 13th Annual International 
Conference on Mobile Systems, Applications, and Services (2015), pp. 
227–239. 

[9] S. Reifinger, F. Wallhoff, M. Ablassmeier, T. Poitschke, and G. Rigoll, 
“Static and dynamic hand-gesture recognition for augmented reality 
applications,” in 12th International Conference on Human-Computer 
Interaction (2007), pp. 728–737. 

[10] M. S. Abdallah, "Light-Weight Deep Learning Techniques with 
Advanced Processing for Real-Time Hand Gesture Recognition," Applied 
System Innovation, vol. 5, no. 1, pp. 1–14, Jan. 2022. 

[11] T. Kim, H. Lee, and S. Park, "Real-Time Hand Gesture Recognition Using 
EfficientNet-Lite," IEEE Access, vol. 9, pp. 134297–134308, 2021. 

[12] X. Li, Y. Zhai, and J. Ma, "Hand Gesture Recognition Using 
MobileNetV3 for AR/VR Interaction," IEEE Transactions on Human-
Machine Systems, vol. 52, no. 3, pp. 584–595, May 2023. 

[13] R. K. Gupta and S. Sharma, "A Comparative Study of CNN Architectures 
for Hand Gesture Recognition in Mobile Environments," IEEE 
Transactions on Mobile Computing, vol. 21, no. 4, pp. 3091–3102, Apr. 
2023. 

 

ILMA Journal of Technology & Software Management - IJTSM Vol. 5 Issue. 2 39



[14] M. Zhang and Y. Wang, "Edge-AI Based Hand Gesture Recognition for 
IoT Devices," IEEE Internet of Things Journal, vol. 10, no. 5, pp. 4893–
4905, Mar. 2023. 

[15] J. C. Paul and K. Reddy, "A Lightweight CNN Model for Gesture-Based 
Text Input in AR Systems," IEEE Transactions on Neural Networks and 
Learning Systems, vol. 34, no. 2, pp. 2345–2356, Feb. 2024. 

[16] Rahman et al., "Hand Gesture Recognition Using Depth Cameras and 
Transfer Learning," IEEE Transactions on Multimedia, vol. 26, pp. 897–
908, Jan. 2023. 

[17] P. Kumar, R. Mishra, and A. Singh, "Hybrid Deep Learning for Real-Time 
Gesture Recognition on Mobile Devices," IEEE Transactions on 
Consumer Electronics, vol. 69, no. 3, pp. 452–461, Sep. 2023. 

[18] M. Khan et al., "Gesture Recognition for Smart Home Control Using a 
Tiny CNN Model," IEEE Transactions on Smart Computing, vol. 15, no. 
1, pp. 378–389, 2022. 

[19] D. S. Park et al., "Accelerating Hand Gesture Recognition on Mobile 
Platforms via Pruned CNNs," IEEE Transactions on Mobile Computing, 
vol. 22, no. 1, pp. 191–203, Jan. 2024. 

[20] F. Luo and B. Zhao, "Hand Gesture-Based Text Input for Augmented 
Reality: A Deep Learning Approach," IEEE Transactions on Visualization 
and Computer Graphics, vol. 30, no. 1, pp. 91–101, Jan. 2024. 

[21] G. Patel and V. Agarwal, "MobileNetV3-Based Hand Gesture 
Recognition for Wearable Devices," IEEE Sensors Journal, vol. 23, no. 6, 
pp. 7854–7865, Mar. 2023. 

[22] H. Sun and Y. Chen, "Self-Supervised Learning for Hand Gesture 
Recognition in Low-Light Conditions," IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 45, no. 1, pp. 67–79, Jan. 2024. 

[23] J. Lee and S. Choi, "Gesture Recognition for Virtual Keyboard Input 
Using CNN-LSTM Networks," IEEE Transactions on Cybernetics, vol. 
53, no. 4, pp. 1579–1591, Apr. 2023. 

[24] L. R. Cenkeramaddi, "Video Hand Gestures Recognition Using Depth 
Camera and Lightweight CNN," IEEE Sensors Journal, vol. 22, no. 14, 
pp. 14610–14619, Jul. 2022. 

 

 

ILMA Journal of Technology & Software Management - IJTSM Vol. 5 Issue. 2 40


