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INTRODUCTION 

Emotion recognition from text is becoming increasingly 

essential as conversational AI interfaces such as chatbots, 

virtual assistants, and automated customer-service agents are 

integrated into everyday tasks. Understanding the emotional 

state of users enables these systems to interact more nat- urally, 

empathetically, and effectively. Emotion Recognition in 

Conversation (ERC) is a specialized field within affective 

computing that seeks to extract discrete emotions such as anger, 

fear, joy, love, sadness, and surprise from conversational text, 

going well beyond simple sentiment polarity [1], [2]. Ac- curate 

emotion detection improves user satisfaction, supports 

therapeutic and educational applications, and enhances content 

moderation on social platforms. 
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Abstract— Detection of Emotion from Conversational 

Data is the key to improving human-computer 

interactivity and under- standing how emotions work in 

digital communication. This paper investigates the role of 

four latest sophisticated models based on Transformer 

architecture includes DistilBERT, XLNet, RoBERTa and 

Bigbird in achieving high accuracy for emotion 

recognition from text-based dialogues. This research 

employs a comprehensive methodology of text cleaning, 

label encoding, model training on the diverse dataset 

collected from social media platforms and chat logs for 

six key emotion classes: anger, fear, joy, love, sadness, and 

surprise. The model was evaluated using measures of 

accuracy, precision, recall F1-score and confusion 

matrices. The findings indicated significant model 

performance variations, where RoBERTa achieved the 

highest validation accuracy while BigBird remained 

robust across different metrics particularly in identifying 

intricate emotional subtleties. The classification of 

’surprise’ is often misperceived with both joy and love 

across all models, which the analysis also flagged as a 

consistent challenge. This study highlights both 

advantages and limitations of these models, while offering 

new grounds for improved accuracy in affective 

computing. The findings will have a substantial impact on 

how to create more empathetic and effective AI-driven 

communication tools like customer service, mental health 

therapy, social media analysis. 

 

 

Traditional sentiment analysis, while useful, frequently lacks the 

granularity required in domains where identifying subtle 

emotional cues is critical. Early approaches LSTMs, CNNs, and 

RNNs could handle text classification but struggled with 

capturing long-term dependencies and nuanced context [1] [3]. 

The advent of Transformer-based models marked a paradigm 

shift: architectures like BERT, XLNet, RoBERTa, and BigBird 

rely on self-attention mechanisms to encode both syntax and 

context more effectively [4], [5], [6]. Although these models 

have achieved state-of-the-art results in a wide range of NLP 

tasks, their comparative effectiveness specifically for emotion 

detection in conversation remains underexplored. 

 

A notable gap lies in evaluating models designed for different 

trade-offs: while DistilBERT is optimized for efficiency, XL- 

Net leverages permutation-based training to capture bidirec- 

tional context without masking, RoBERTa employs optimized 

pretraining routines, and BigBird uses sparse attention for long 

input sequences [5], [6] [7]. Previous comparisons [8] have 

shown that Transformer variants can outperform tradi- tional 

models in emotion classification. However, few stud- ies have 

examined how differences in attention mechanisms, encoding 

paradigms, and sequence handling affect emotion 

detectionespecially in dynamic conversational text. Emotion 

detection in conversations poses unique challenges. Emotions in 

dialogue may hinge on prior speaker turns, and lexically similar 

emotions like joy and love or surprise and fear can be easily 

confused [2], [8]. Moreover, emotional labels are often 

imbalanced, with some emotions underrepresented, reducing 

model sensitivity to less common classes like surprise [2]. 

BigBird’s long-sequence capacity, for example, may allow 

better tracking of emotional progression in extended dialogues, 

but its effectiveness versus performance-intensive architectures 

remains a question. 

 

Our study addresses these challenges by conducting a direct, 

head-to-head comparison of four Transformer architectures 

[9] DistilBERT, XLNet, RoBERTa, and BigBird for the task of 

emotion detection in conversational text. We begin with a 

diverse, Kaggle-sourced dataset containing social media 

dialogues and customer-service interactions, manually anno- 

tated across six emotional categories. This dataset covers a 

broad spectrum of conversational styles and ensures that sub- 

tle, context-dependent emotion variations are included. Each 

model is fine-tuned using a standardized pipeline, involving data 

cleaning, label encoding, tokenization [10], and tun- ing with 

uniform hyperparameters. We measure performance across 

multiple dimensions accuracy, precision, recall, F1- score, and 

confusion matrices highlighting both overall and per-class 

variations [11]. 
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Our research aims to provide several key contributions. First, it 

offers a controlled empirical benchmark for mod- ern 

Transformer-based models, highlighting how attention 

structure, context capture, and sequence length capabilities 

translate to emotional understanding. Second, it presents archi- 

tectural insights: for example, the comparative speed-efficiency 

of DistilBERT, XLNet’s handling of syntactic complexity, 

RoBERTa’s contextual robustness, and BigBird’s performance 

on narrative dialogue. Third, it sheds light on consistent 

classification challenges particularly the misclassification of 

surprise offering suggestions for addressing label imbalance 

and ambiguous emotion boundaries. 

 

This investigation has practical significance. Real-world con- 

versational AI applications such as mental health chatbots, 

educational tutors, and online content moderation tools re- quire 

accurate emotion detection. By revealing how archi- tecture 

choice influences model behavior in these contexts, we inform 

system designers about potential trade-offs. For instance, 

BigBird may help track emotional progression across long 

dialogues but may struggle with efficiency in real-time 

applications where DistilBERT excels. 

 

In addition, highlighting the limitations of existing Trans- 

former models such as difficulty recognizing surprise mo- 

tivates future research directions. Effective solutions might 

include targeted data augmentation for rare emotions, hier- 

archical emotion labeling, or hybrid approaches combining text 

with speech or visual cues [12], [13], [14]. Our study thus forms 

a methodological bridge: combining large-scale emotion-

labeled conversational data with comparative model analysis to 

guide next-generation emotion-aware systems. 

 

The structure of this paper proceeds as follows. Section II 

reviews relevant literature in emotion recognition and 

transformer-based NLP, exposing prior work and remaining 

gaps. Section III details our methodological approach, in- 

cluding dataset preparation, preprocessing, tokenizer choice, 

model training, and evaluation framework. Section IV reports 

experimental results across each model. Section V offers an 

interpretation and discussion of these findings, examining ar- 

chitectural strengths, limitations, and implications. Section VI 

concludes by summarizing contributions, outlining theoretical 

and practical implications, and proposing directions for future 

work Section VIII. 

 

LITERATURE REVIEW 

In this section, we provide a comprehensive literature re- view 

on emotion detection based on text, specifically we examine the 

evolution of Emotion text-based detection based on statistical 

models [15], Machine Learning Models, [16] Deep Learning 

Models [17], and furthermore application of transformer-based 

modes. Additionally, we also explore some existing 

transformer-based models like BERT, [18] Distil- BERT, 

RoBERTa (A Robustly Optimized BERT Pretraining 

Approach), XLNet: Generalized Autoregressive Pretraining for 

Language Understanding and BigBird, is a sparse-attention 

based transformer which extends Transformer based models. 

By combining the current study, we identify the research gap 

and propose further discussion to improve accuracy, effective- 

ness, and efficiency of Emotion detection text-based subtasks 

with the provision of transformer-based models [9]. 

 

A. Evolution of Emotion text-based detection 

Early approaches to emotion text-based detection task as tweets 

text, chat conversation text, or email body text classifi- cation 

problem, where the overall sentiment of the entire text was or 

sentence was determined [19] However, this approach could not 

detect nuanced opinions about specific emotions or sensitivity 

mentioned in the text. whereas emotion text-based detection 

emerged as a kickback to this limitation, aiming to provide a 

more detailed understanding of emotions by associating it with 

dimensions or features. 

 

Text-based emotion detection has become increasingly 

prevalent due to its applications in understanding end-user 

emotions over time, conversation, or post in a more unstructured 

manner. There are various studies of Emotion text-based detec- 

tion, models are Machine-learning (ML) models [16], Deep-

learning (DL) [20] and transformer-based pretrained models 

[21]. 

 

B. Machine Learning Techniques 

Machine Learning (ML) is a key area of Artificial Intelli- gence 

(AI), focusing on the development of advances statistical 

models and algorithms [16]. ML allows computer enough 

intelligent to learn form given data and make decisions or 

predictions without any complex or hard programming instruc- 

tions [22]. The application of ML techniques marked a signif- 

icant advancement in Emotion detection from text. Supervised 

learning models, such as Logistic Regression, Random Forest 

and Support Vector Machine (SVM) [23], were employed for 

Emotion Detection from text. These models performance and 

effectiveness depended on feature engineering, involving the 

careful extraction of key text features such as n-grams, part-of- 

speech, and embedding techniques. However, the performance 

of these methods depends on features selection. However 

manual feature engineering causes for limitation in both time 

consuming and efficiency, so to overcome these limitations, 

researchers explored DL techniques for Emotion detection tasks 

just to enhanced efficiency and accuracy. 

 

C. Neural Network Techniques 

Powered by rapid advancements in neural network tech- niques, 

Deep Neural Networks (DNNs) have achieved visible 

improvement in various aspects and purposes. This approach 

has led Emotion Detection from text research to transform from 

feature-based techniques to auto feature extraction likely DNN 

Models. Deep Neural Network architectures, such as recurrent 

neural networks (RNNs) [24], convolutional neural networks 

(CNNs) [25], and transformers [21] revolutionized the field of 

Emotion detection from text. This study utilized the Emotions 

detection datasets from Go Emotions dataset [dataset paper 

reference], and Emotions from Tweet Emotions datasets for 

Emotion detection form text. Whereas, for the Emotion 

detection task, Tweet Emotions, and GoEmotions dataset were 

utilized from the past 2 years. In addition to that, an RNN-based 

model that involves long short-term memory (LSTM) [24] [26], 

and a gated recurrent unit (GRU). These models have shown 

enhanced performance in capturing contextual information and 

learning intricate patterns within textual data. Attention-based 

LSTM and Bi-LSTM models have been widely proposed for 

Emotion Detection [27]. The ability of neural networks to 

automatically learn features that contributed to their goal in 

particular given tasks. This quality impressive to shift from old  
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feature-based methods to new Neural network architectures 

which has significant achievements in recent years. This Neural 

network approach bring a very good perspective and efficiency 

in text-based Emotion Detection. Whereas we found some 

limitation in the models Like RNN and its flavors like GRU, 

LSTM, Bi-LSTM, firstly we have to train these models on 

certain dataset and then testing on another dataset are not 

performing good on other dataset that mean we have to train our 

models on huge data for more efficiency so, in recent years we 

found some transformer- based pretrained models pretrained 

which are already trained on a very large dataset [28]. 

 

D. Transformers Based Techniques 

The basic observation behind transformers were a Sequence- 

to-sequence modeling for machine translation. Later study 

demonstrates that Transformer-based pre-trained models 

(PTMs) can produce novel outcomes on many kinds of tasks. 

Transformer PTMs have excellent performance in text-based 

Emotion detection and other natural processing tasks [18]. 

Much more efficient than earlier methods in the obtain of 

Longitudinal dependencies and contextualized information or 

data. Transformers quality of self-attention mechanism that 

obtain Longitudinal dependencies within a text until the neu- 

ral networks which process the data sequentially whereas 

transformer process word parallel to obtain the contextual 

information [21]. As Figure 1 shows that encoder takes a series 

of input symbols like [x1, x2,.   ,xn] is encoded by continuous 

series of symbols like [z1,z2,. . . ..,zn], once z is generated, the 

decoder starts decoding to create the continuous series of output 

sequence [y1,y2,.  yn] [9]. 

 
Fig. 1. Transformer model architecture 

 

 

In the context ofText-based Emotion detection, encoder takes 

the conversation sentence and emotion as an input and encodes 

it into a highly detailed representation whereas the output side 

the decoder predicts the emotion according to their features. The 

self- attention mechanism of transformer records the features for 

better results [20]. Fine-tuning pre-trained transformer models 

for text-based emotion detection tasks became a common 

practice, allowing models to leverage large-scale pre-training on 

distinct textual data. 

 

E. BERT 

BERT (Transformers Bidirectional Encoder Representa- tions) 

has become more influential in recent years because of its 

powerful transformer-based model that has recast natural 

language processing tasks because of its bi-directional Trans- 

former architecture context understanding becomes stronger 

[20] BERT performance across almost all domains of NLP such 

as Emotions detection in text, text generation, text 

summarization, text classification, sentiment analysis, question 

answering, and machine translation etc. 

 

BERT’s understanding of language in context has showed the 

noticeable efficiency in search engines, chatbots, and virtual 

assistants and getting more accurate responses and user enjoys 

their better experiences [28]. Although BERT-based models 

have also performed extraordinary in Text-based Emotion 

Detection tasks, including the need for domain-specific pre- 

training, handling multi labelled data for specific domains for 

more specific between two most similar Emotions Like Happy 

and Fun. Hence, to overcome these limitations, Pre- trained 

Models such as DistilBERT, RoBERTa, XLnet and BigBird 

[29] can be used for more accurate prediction text- based 

emotions detection tasks. 

 

F. DistilBERT 

DistilBERT is based on the concept of knowledge distil- lation 

introduced by [30]. It uses a distillation knowledge to train as a 

pre-trained model BERT’s on very few features and in results 

good performance and accurate prediction [3]. This is same as 

BERT Transformer architecture uses pre-trained model on self-

supervisor learning on textual data uses bi- directional encoder 

and decoder for contextual understanding of information while 

making prediction. Many researchers and developer prefer 

DistilBERT model because it’s smaller in size and faster in 

training with any training loss perform better and more accurate 

[29]. 

 

G. RoBERTa 

As in above sections we discuss some transformer-based 

architecture and modification to pre-trained models with their 

hyperparameters that how they improve their performance 

accordingly [3]. Further we add up the improvements by setting 

new models with its some hyperparameters to BERT approach 

and this configuration setup known as RoBERTa for Robustly 

optimized BERT approach. This model is trained using a 

masked language modeling goal and a next sentence prediction 

objective on a wide range of text data, including novels, web 

pages, and Wikipedia. [29]. The results RoBERTa can produce 

revolutionary results on emotion detection tasks, as shown by 

the researchers, and it depends on dataset nature too to find the 

best models fit on tasks. 
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Σ 

H. XLNet 

XLnet is another advanced algorithm of pre-trained language 

models. This algorithm is based on self-attention mechanisms, 

and its basic feature like BERT but little more different from 

BERT [31]. XLNet is an autoregressive modeling method 

called autoregressive self-attention. It is a combination of au- 

toregressive (AR) and autoencoder (AE) [29]. This algorithm 

works like we want prediction of emotion XLnet fetch all the 

meaningful information from all possible nodes of language 

representations with better contextual understanding helps a lot 

in Emotions prediction for unseen data. 

 

I. BigBird 

As all above discussed Transformer-based models are more 

efficient deep learning models for NLP tasks. But limitation of 

these models are their attention mechanisms is much more 

dependent on sequence length as like memory size, batch size 

and so on which was big barrier by this barrier handled by a 

spare attention mechanism algorithm called BIGBIRD [7] 

introduced by Google research team. 

 

It takes linear time as above models takes time quadratic 

dependent. It takes linear time, because of its spare attention 

mechanism as all other models works on full attention 

mechanism that’s take time and effects the results too. 

BIGBIRD uses sparse attention on each layer of the input 

sequences X = [X1, X2, X3, X4,.  Xn] [?]. For a directed graph 

D, the generalized attention with vertex set of V = [1,2, 3,   n] 

Neighbors N(i), then the output vector of the generalized 

attention is given as: 

 
Hd 

AttnD(X)i = xi +   α(Qn(xi)Kn(XN (i))T ).Vn(XN (i)) 
i=1 

 

where:  

Qn and Kn are the query and key functions, respectively, 

Vn is a value functions, 

α is a scoring function, and 

Hd respesents the head in numbers. 

Also note XN (i) corresponds too the matrix formed by only 

stacking {xj : j ∈ N (i)} and not all the inputs. 

 

There are very few studies in the literature that explore the 

potential of BigBird and other sparse-attention-based 

transformers for emotion detection, explore the detailed 

comparative analysis from various domains, and the LLMs are 

not presented. However, in general, the main purpose of the 

study is to predict the different emotions of text conversation 

and also of tweets. Furthermore, this study does not present a 

comparative analysis with LLMs. 

 

J. Comparison to Literature and Literature Gap 

Although some research studies examined the model perfor- 

mance for NLP, general sentiment tasks or emotion recognition 

task, only very few made the comparison based on the emotion 

recognition in the conversational scenarios. For instance: 

• In [8], applied different BERTs to generic emotion 

 tasks but did not consider conversational nuances. 

• In [12], presented speaker-aware RoBERTa, though 

 they did not compare against sparse attention models 

 like BigBird. 

 

In addition, there are limited studies which address the under- 

representation of emotion labels (e.g., “surprise”), emotion label 

imbalance and context ambiguity (e.g., confusion be- tween joy 

and love). The majority of works ignores domain adaptation, 

trade-offs and real-time adoption. 

 

There are, however, significant gaps in the current literature 

which restrict the progress towards building emotion detection 

systems that are robust to conversational text. Only a few works 

carry out thorough, head-to-head comparisons of Transformer 

models with the same experimental setting applied to dialog-

based emotion recognition. Sparse-attention back-bone models 

such as BigBird also show promise for long-text processing but 

have been less extensively studied in this direction. Second, 

little attention has been paid to less frequent or inherently 

ambiguous emotion classes (e.g. “sur- prise”), which typically 

causes poor performance and neglects some nuances of emotion. 

Apart from model accuracy, little consideration has been paid to 

the balancing trade-offs among computational efficiency, 

inference latency, and deployment practicality. These 

limitations imply that there is space for broader studies that do 

not stop at benchmark comparisons between model types but 

which also account for real-time and resource limitations of 

actual models in the wild. 

 

METHODOLOGY 

A. Data Collection 

The dataset employed in this research was obtained from 

Kaggle, a globally recognized platform hosting large-scale data 

science competitions and curated datasets for advanced 

analytical research. This particular dataset comprises a di- verse 

collection of conversational text samples extracted from 

multiple sources, including informal social media interac- tions, 

customer service exchanges, personal chats, and digital 

discussion forums. The richness of this dataset lies in its 

coverage of varied linguistic tones, grammatical structures, and 

conversational complexities, making it a highly suitable 

foundation for emotion detection tasks in natural language 

processing (NLP). 

 

Each dialogue is treated as a data instance and stored in tabular 

format (rows x columns) where rows are the instance or records 

and 2 columns means the raw text or dialogue and its emotional 

label. This structure supports a completely smooth supervised 

learning and classification process. Crucially, such a dataset 

covers six universally recognized emotions for the comfort: 

anger, fear, joy, love, sadness, and surprise, consistent with 

existing emotion models in psychology and affective 

computing. Figure 2 shows the analysis of label distribution on 

the training images to emphasize the class balance and fairness 

in training and evaluation. 

 

B. Annotation Method 

The dataset was initially annotated for discrete emotional labels 

based on an improved schema defined by six core emotions: 

anger, fear, joy, love, sadness and surprise. Anno- tations: 

Following established guidelines in affective computing, 

annotations were done by more than one annotator to ensure  

 

consistency and minimize subjective bias. We used its 

conversational dialogue and labeled each such dialogue with 

specific emotional labels making learning from it in a structured 

manner easy for training emotion detection models. This 
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methodical annotation enables a detailed analysis of the 

models’ capabilities in recognizing and classifying nuanced 

emotional expressions. 

 

 
 

Fig. 2. Distribution of Emotional Labels in Training Data 
 

C. Data Preprocessing 

Preprocessing is a crucial stage in natural language compre- 

hension, particularly when addressing fine-grained, semantic 

classification tasks like emotion detection [32]. The raw text 

was processed through a series of systematic transformations to 

minimize noise and unify the input across all models. These 

steps included: 

• Lowercasing: All text was converted to lowercase to 

 avoid case-sensitive mismatches. 

• Punctuation Removal: All nonalphanumeric 

 characters were eliminated using regular expressions 

 to prevent irrelevant tokens from affecting the learning 

 of the model. 

• URL and Username Removal: The identifiers, links, 

 and other metadata were removed to maintain the 

 privacy and prevent leaking of sensitive information. 

• Stopword Removal: All the ENGLISH (common) 

 stop- words were eliminated, thus sharpening the 

 focus of the model on emotionally charged words. 

• Noise Reduction: Low-frequency tokens, emojis and 

 escape characters were removed for readability. 

 The character distribution of printed sentence was also 

 counted (see Figure 3), which was useful for learning 

 the text complexity and the optimal token sequence 

 length for training. 

 

D. Label Encoding Techniques 

Since the categorical emotion labels when used to train and 

predict required numerical inputs, Label Encoder was 

employed for efficient model training and predictions. Having 

every one of the emotions types a unique integer as mention in 

Table I, makes it much easier for our model to digest and learn 

from those texts. The encoding used was kept consistent 

through training, validation and testing datasets to ensure data 

fidelity which resulted in an accurate model. This encoding 

remained consistent throughout the training, validation, and 

testing phases, ensuring label integrity and reproducibility 

during evaluation and cross-model comparison. 

 
Fig. 3. Distribution of Text Lengths Across Conversational Samples 

 

 

TABLE I 

LABEL ENCODING SCHEME FOR EMOTION 

DETECTION 
Label Mapping 

Category Label Encoding 

anger 0 

fear 1 

joy 2 

love 3 

sadness 4 

surprise 5 

 

E. Tokenization and Model-Specific Input Formatting 

Tokenization was a crucial step in preparing the textual input for 

transformer-based models [10]. Each model architecture 

required its own tokenizer, capable of mapping the raw text to 

the token embeddings expected by the model: 

• DistilBERT: Utilized the DistilBert Tokenizer, 

 optimized for lightweight, efficient tokenization while 

 preserving semantic fidelity. 

• XLNet: Used permutation-enabled tokenization and 

 encoding of positional permutations to model 

 dependencies from both directions. 

• RoBERTa: Employed a byte-level BPE tokenizer that 

 is good for maintaining the structure and context of the 

 sentence. 

• BigBird: we utilized BigBird Tokenizer configured for 

 long-seq processing and with padding/truncation 

 settings that allowed maximum of 512 tokens. 

 Tokenization was performed with padding=True, 

 truncation=True for obtaining a fixed-length input 

 sequences that could be batch trained and adapted to 

 the transformer model. 

F. Model Selection Rationale 

The models selected for this study DistilBERT, XLNet, 

RoBERTa, and BigBird were selected for their architectural 

richness and complementary capabilities of representing lan- 

guage semantics and emotions. Each model has contributed to a 

state-of-the-art invention of the Transformer family and targets 

certain inherent limitations in earlier designs: 

1) DistilBERT: DistilBERT is a small, fast, cheap and 

light Transformer model based on BERT specifically pruned for 

fast inference. It utilizes knowledge distillation in the training 

phase to achieve strong efficiency, which is very suitable for  
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resource limited scenarios such as mobile devices or real-time 

systems [14]. 

 

In this study, it achieved good performance with minimal 

overfitting and quick convergence. While being lighter in terms 

of computational and memory requirements as shown working 

in model architecture shown in Figure: 4 and reduced in com- 

putational and memory cost. This model was selected because 

it effectively processes massive datasets with little loss of 

accuracy. It is efficient in understanding sparse conversational 

snippets. It is well suited for resource constrained scenarios like 

mobile and real time apps. 

 

 

 
Fig. 4. DistilBERT Model Architecture 

 

2) XLNet: XLNet improves on BERT by introducing a 

permutation-based training objective that captures bidirec- 

tional context without masking. Its autoregressive nature al- 

lows it to better model word dependencies, especially in longer 

or complex conversational sequences [33]. In this study, it 

demonstrated superior recall for emotions such as fear, which 

often depend on contextual nuance. This property makes XLNet 

good at dealing with long and complicated sequence structures 

as shown in Figure: 5 which is exactly what you want when 

analyzing conversations that include very complex emotional 

expressions. 

 

 
Fig. 5. XLNET Model Architecture 

 

 

3) RoBERTa: RoBERTa refines the BERT architecture 

by optimizing the training regime: it uses dynamic masking, 

longer training durations, and larger batch sizes [6] [12]. It 

excels in understanding subtle emotional distinctions and  

proved to be the most balanced and accurate model in this re-

search. It also showed strong generalization across classes and 

robustness in handling ambiguous or context-heavy phrases. 

Figure: 6. 

 

 

Fig. 6. Roberta Model Architecture 

 

4) BigBird: BigBird is a Transformer based model that 

pro- vides wider context and long-range dependencies in 

constant num- ber of operations thus addressing some 

limitations of models such as BERT or RoBERTa, which 

capture only local context as of it’s advance architecture Figure: 

7. BigBird can handle much longer text sequences because it is 

using a type of sparsity attention such that each token attends to 

many fewer other tokens, which makes it ideal for analyzing 

very long conversations while preserving the relative 

information. It is useful for long threads of customer service 

interactions or Twitter conversations where emotional context 

can change multiple times during the conversation. 

 

 
Fig. 7. BigBird Model Architecture 

 

G. Model Implementation and Training 

Each model was implemented using Hugging Face’s trans- 

formers library and trained independently on the same training 

data. The training environments were standardized with shared 

hyperparameters (e.g., batch size, learning rate, epoch count) 

where applicable to allow fair comparison . 

• Frameworks: TensorFlow for DistilBERT and XLNet; 

 PyTorch for RoBERTa and BigBird. 

• Loss Functions: SparseCategoricalCrossentropy for 

 Ten- sorFlow models, CrossEntropyLoss for PyTorch 

 models. 

• Optimizers: Adam with learning rates ranging from 2e-

 5 to 5e-5. 

• Epochs: 6 for BigBird (to prevent overfitting on long 

 sequences), 20 for others based on convergence. 

H. Evaluation Metrics 

All models were evaluated on the same held-out test set using a 

consistent set of evaluation metrics. These included: 

• Accuracy: Overall classification correctness. 
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• Precision, Recall, F1-Score: Computed per class and 

 averaged using macro and weighted strategies. 

• Confusion Matrix: Generated for visualizing 

 misclassification patterns and understanding inter-

 class confusion. 

Metrics were calculated using Scikit-learn functions post- 

inference, with the predicted logits converted to class indices 

using argmax. 

 

I. Tooling and Environment 

The entire research was implemented using the following 

toolkits and environments: 

• Hugging Face Transformers: Pretrained models and 

 tokenizers. 

• Hugging Face Datasets: Dataset loading, efficient tok- 

 enization and data processing, and metric 

 computation. 

• TensorFlow & PyTorch: Training and Inference of the 

 Model. 

• Scikit-learn: Label encoding, metric computation, and 

 confusion matrices. 

• Matplotlib & Seaborn: Loss, accuracy and distribution 

 visualizations 

All experiments were conducted with the use of GPU due to the 

quickness of training and reproduction [34]. 

 

J. Summary of Methodological Rationale 

The methodological setup was developed to make a com- 

prehensive and controlled comparison between transformer 

models with customized architectures of model. We stan- 

dardized preprocessing, tokenization, training conditions and 

evaluation metrics, to the end of ensuring that performance gaps 

are genuinely clear and obvious by model architecture rather 

than experimental variability. Our results provide ac- tionable 

suggestions for researchers and developers in affective 

computing, particularly those building emotionally intelligent 

systems in the form of chatbots, mental health assistants and 

conversational agents. 

 

RESULTS 

 

This section provides an in-depth analysis of performance 

results from the comparison of four Transformerbased mod- 

els—DistilBERT, XLNet, RoBERTa, and BigBird—on emo- 

tion detection task leveraging conversational text. Models were 

developed with training and testing performed on identical 

datasets, with model performance evaluated with a set of 

standard metrics such as accuracy, precision, recall, F1-score 

and confusion matrix analysis. Training behaviour and gen- 

eralisation to unseen data was assessed through performance 

plots and classification reports. 

 

A. Performance Comparison 

1) Model Accuracy and Loss: The performance of each 

model was tracked across training epochs using both accuracy 

 

and loss curves. Figures 8,11,9,10 illustrate the training and 

validation accuracy and loss for each model. 

• DistilBERT demonstrated rapid convergence, 

achieving a peak training accuracy of approximately 99.41%, 

with a corresponding validation accuracy stabilizing around 

93.55%. The training loss steadily decreased, while the 

validation loss exhibited moderate fluctuation, indicat- ing 

slight overfitting tendencies over extended training epochs. 

Despite its compact architecture, DistilBERT showed strong 

classification capability across most emo- tion classes, though 

performance on less represented categories such as surprise was 

comparatively weaker (Figure: 8). 

• XLNet achieved a training accuracy of 99.32% and a 

validation accuracy reaching 93.90%. Its learning curve 

remained consistent with a low training loss and a vali- dation 

loss that gradually increased in later epochs, sug- gesting some 

generalization limits (Figure 9). The model handled syntactic 

complexity well, supporting accurate learning of emotion 

representations embedded in more grammatically rich 

sentences. 

• RoBERTa outperformed the other models in terms of 

validation accuracy, peaking at 94.20%. Both training and 

validation accuracy remained high and stable throughout 20 

epochs of training. The loss graph indicated minimal overfitting, 

with validation loss staying consistently low and close to the 

training loss (Figure 10). These results affirm the efficacy of 

RoBERTa’s pretraining strategies and robust context modeling 

in emotion classification tasks. 

• BigBird, designed for handling longer sequences, 

achieved a training accuracy of 94.20% and a validation 

accuracy of 93.0% over 6 epochs. While the training loss 

showed a consistent downward trend, the validation loss began 

to increase slightly in later epochs, reflecting early signs of 

overfitting on longer text sequences (Figure: 11). Nonetheless, 

BigBird maintained stable performance in processing extended 

conversations. 

 

2) Confusion Matrices analysis: Confusion matrices were 

used to examine how well each model performed across 

 

 
Fig. 8. DistilBERT Training & Validation Accuracy and Loss 

 

 
Fig. 9. XLnet Training & Validation Accuracy and Loss 

 

 

7ILMA Journal of Technology & Software Management - IJTSM Vol. 6 Issue. 1



The six emotion categories. Figures:12,13,14,15 display the 

distribution of true and predicted labels for each model. A 

comparative observation across models revealed that certain 

emotion pairs, such as joy and love, or fear and surprise, were 

more frequently misclassified. This can be attributed to 

overlapping lexical patterns or shared contextual cues in the 

input data. 

• DistilBERT exhibited relatively high accuracy across 

joy, sadness, and anger, while showing more frequent 

misclassifications in love and surprise (Figure: 12). 

 

Fig. 10. RoBERTa Training & Validation Accuracy and Loss 

 

Fig. 11. BigBird Training & Validation Accuracy and Loss 

 

 

• XLNet handled fear particularly well, showing 

improved recall in this class. However, it also showed 

occasional confusion between joy and love, as seen in its 

confusion matrix (Figure 13). 

• RoBERTa displayed balanced classification across all 

emotion categories, with fewer misclassifications, espe- cially 

in closely related emotions such as joy and love. Its confusion 

matrix showed the most compact diagonal (Figure: 14). 

• BigBird also delivered balanced predictions, but 

confu- sion between joy and love was again evident. It managed 

to preserve context for longer sentences, helping retain high 

classification integrity across sadness and fear (Fig- ure: 15). 

 

 
Fig. 12. Confusion Matrix of DistilBERT 

 

 

 
Fig. 13. Confusion Matrix of XLnet 

 

B. Detailed Model Behavior Analysis 

1) Interpretation of Prediction Results: To further under- 

stand model behavior, classification reports were generated for 

each model, summarizing precision, recall, and F1-score 

 

      
 

 
Fig. 14. Confusion Matrix of RoBerta 

 
Fig. 15. Confusion Matrix of BigBird 
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for each class. Figures: 16,17,18,19 provide a visualization of 

these metrics. 

• DistilBERT offered consistently high precision and 

recall for joy, sadness, and anger. However, its classification of 

surprise suffered from lower recall (0.71), which may be 

attributed to the low frequency of this label in the training set 

(Figure: 16). 

• XLNet demonstrated strong recall for fear (0.96) and 

sadness (0.98), leveraging its permutation-based attention to 

learn complex emotional structures in text (Figure: 17). It 

showed high F1-scores across all major classes, maintaining 

balanced performance. 

• RoBERTa achieved the most uniform precision-recall 

balance across all six emotion categories (Figure: 18). It 

maintained macro and weighted F1-scores above 0.93, 

indicating strong robustness and generalization across high- 

and low-resource classes alike. 

• BigBird while optimized for long sequences, handled 

shorter texts effectively as well. Its F1-score for love and 

surprise remained consistent with other models, indicat- ing its 

capability to process nuanced emotional signals in longer 

conversations (Figure: 19). 

  

 
Fig. 16. Classification of DistilBERT 

 
Fig. 17. Classification of XLnet 

 

 

2) Strengths and Trade-offs: Each model exhibited 

strengths based on its architecture and training philosophy. 

These strengths and potential trade-offs are summarized be- 

low: 

• DistilBERT offered fast training and low 

computational overhead, making it well-suited for real-time or 

low- resource applications. However, its reduced model size 

limited its ability to fully capture subtleties in low- frequency 

emotion classes. 

• XLNet excelled at learning deep contextual 

relationships, benefiting from its permutation-based learning 

strategy. It required more training time and memory, which may 

impact deployment in constrained environments. 

• RoBERTa consistently performed well across all eval- 

uation metrics. Its deep pretraining and optimization strategies 

contributed to high accuracy but required longer training times 

and substantial compute resources. 

• BigBird has ability to work with long inputs and long 

conversations. Although it was suitable for multiturn 

 

 
 

Fig. 18. Classification of RoBERta 

 

 
Fig. 19. Confusion Matrix of BigBird 

 

dialogues and threaded conversations, it was too heavy on the 

extraction of subtle emotions expressed over short utterances. 

3) Summary of Performance Metrics: Table II presents a 

summary of important metrics for each model: the global 

accuracy, the macro and weighted F1-scores and some class- 

wise performance highlights. 

TABLE II 

KEY PERFORMANCE METRICS FOR DISTILBERT, 

XLNET, ROBERTA, 

AND BIGBIRD 
Model Accuracy Macro F1 Weighted 

F1 
Notable

 
Class 

Strengths 

DistilBERT 92.95% 0.89 0.93 Joy, Sadness 

XLNet 93.20% 0.89 0.93 Fear, Joy 

RoBERTa 93.15% 0.89 0.93 BBalance 
across all 

BigBird 93.00% 0.88 0.93 Sadness,
 
Long Input 
(required) 
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DISCUSSION 

 

The comparative analysis of DistilBERT, XLNet, RoBERTa, 

and BigBird models for detecting emotions in conversational 

text demonstrates both the strengths and weaknesses of 

contemporary Transformer-based models for handling affective 

information. Such models, with varying design philosophies 

and optimization schemes, provide insights into how deep 

language models understand and categorize human emotions 

conveyed in context through natural language interaction. The 

results of this study validate the applicability of Transformer-

based models for emotion classification tasks, but point out the 

crucial issues for further development and investigation. 

 

The implementation of DistilBERT, XLNet, RoBERTa, and 

BigBird has provided great knowledge about how Transformer 

models are-stored-how better and more efficient they become 

in perceiving and reasoning over emotional content during text 

conversations. This section examines the details of the 

explained results including the captured emotional dynamics, 

the difficulties faced and the approach taken by the different 

models in the detection of emotions. 

 

CONCLUSION 

 

The goal of this research was to assess the suitability and 

performance levels of four different Transformer models: 

DistilBERT, XLNet, RoBERTa and BigBird as applied to 

emotion detection in conversational texts. The detailed analysis 

revealed some big insights, with every model having its own 

specific strengths and weaknesses in the emotion detection 

space. This study revealed that RoBERTa clearly outperformed 

other models in overall accuracy, performing especially well 

with subtle emotions like sadness or joy due to its richer context 

knowledge. The BigBird was very good at handling longer 

passages of text, thus preserving the context for longer 

dialogues like in customer service or therapy conversations. 

DistilBERT, while less robust in depth, offered significant 

efficiency, making it ideal for real-time applications. XLNet’s 

advanced handling of complex sentence structures enabled 

superior performance in detecting emotions embedded within 

intricate expressions. However, all models shared a common 

challenge in accurately identifying the emotion ’surprise,’ 

highlighting a potential area for model refinement and further 

research. 

 

Contributions to the Field 
This research significantly advances the understanding of 

emotion detection within AI and NLP fields by: 

1. Demonstrating the feasibility and effectiveness of 

 using advanced Transformer models for emotion 

 detection in varied textual conversations. 

2. Highlighting the specific strengths and weaknesses of 

 each model, providing a roadmap for future 

 applications and improvements. 

3. Identifying key challenges in emotion detection, 

 particularly in distinguishing between closely related 

 emotional states, which can inform subsequent model 

 training and algorithm adjustments. 

The findings of this study not only enhance existing 

methodologies in affective computing but also contribute to the  

 

 

broader discourse on improving human-computer interaction. 

By refining AI’s ability to understand human emotions 

accurately, this research supports the development of more 

empathetic and responsive AI systems, paving the way for 

innovations that could revolutionize customer service, mental 

health therapies, and social media analytics. 

 

Future Work 

The potential for advancing the field of emotion detection 

through Transformer models is vast, with numerous av- enues 

for further development and application. This research has laid 

a robust foundation, demonstrating the efficacy of DistilBERT, 

XLNet, RoBERTa, and BigBird in understanding emotional 

dynamics within textual data. Building upon these findings, 

future work can focus on refining these models, exploring 

extended applications, and implement- ing real-time systems. 
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