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INTRODUCTION 

Dates are a high–value horticultural commodity across the 
Middle East and South Asia, with growing export flows to 
Europe and East Asia. Meeting destination-market standards 
requires consistent recognition of varieties and assignment 
of appearance-based grades, tasks traditionally performed by 
skilled human graders. However, manual visual inspection is 
slow, fatiguing, and difficult to standardize across shifts and 
facilities, leading to variability in outcomes and reduced 
throughput [24]. Recent advances in deep convolutional neural 
networks (CNNs) have enabled robust, camera-based 
inspection for fruits and vegetables, particularly under 
controlled illumination and background conditions typical of 
post-harvest lines [1], [10]. 
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Within fruit grading, CNNs have displaced handcrafted color/texture 
pipelines by learning task-relevant features directly from images. 
Transfer learning from large, generic datasets (e.g., ImageNet) is now 
the dominant approach when domain data are modest, improving 
accuracy and convergence while reducing annotation burden [12], 
[13]. Architectures from the VGG family remain attractive for 
industrial de- ployments because of their simplicity, stable receptive 
field growth, and predictable latency on commodity hardware, even as 
newer backbones achieve higher benchmarks in uncon- strained 
settings [5]. In the context of date fruits specifically, prior studies 
report strong results with VGG-based models and related CNNs for 
variety/quality assessment and real- time inspection, motivating a 
careful VGG-16 baseline that is practical for small and medium 
facilities [5], [6], [10]. 
This work uses the publicly available Date Fruit Dataset for 
Inspection and Grading (v3) containing four varieties Aseel, Fasli 
Toto, Gajar, and Kupro organized by size (Large/Medium/Small) and 
grade (1/2/3). Images were captured under controlled conditions at a 
fixed camera-to-object distance, reflecting feasible production setups 
[28]. Leveraging this structure, we formulate a supervised classification 
problem for variety recognition and quality grading, and we design a 
training protocol with light geometric/photometric augmenta- tion that 
remains faithful to production lighting. 

Contributions: We make the following contributions: 

• Orchard-to-export pipeline: A compact VGG-16 transfer-

learning pipeline for date fruit inspection that unifies variety 

recognition and quality grading under controlled imaging, with 

design choices oriented toward deployability. 

• Simple, reproducible training: A pragmatic recipe par- tial 

unfreezing, mild augmentation, early stopping, and optional 

class-balanced sampling that stabilizes learning on modest 

datasets while preserving inference speed [12], [13]. 

• Confusion-aware evaluation: Thorough reporting with 

learning curves, class-wise metrics, confusion matrices, and 

qualitative grids to surface operational failure modes (e.g., 

Fasli Toto vs. Gajar look-alikes) [1]. 

• Operational guidance: Practical notes for line inte- gration 

(illumination control, periodic color calibration, batching for 

throughput) and human-in-the-loop verifica- tion to support 

traceability and continuous improvement [10], [24]. 

In comprehensive experiments on a stratified split of the public 

dataset, our VGG-16 model attains high accuracy with balanced per 

class performance and stable learning dynamics. We discuss failure 

modes, ablations, and deployment considerations, and outline extensions 

to multi-task heads and explainability for production adoption.
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Abstract: Reliable grading of date fruits is essential for 
export pricing and compliance but still relies largely on 
human graders, yielding variable quality, limited 
throughput, and weak traceability. We propose a compact 
end-to-end computer-vision pipeline for variety 
identification  and  quality  grading  using  VGG-  16  transfer 
learning. Experiments use the public Date Fruit Dataset for 
Inspection  and  Grading  (v3)  with  four  varieties  (Aseel, 
Fasli Toto, Gajar, Kupro) organized by size and grade, 
captured under controlled illumination. Our training recipe 
applies  light  augmentation,  ImageNet  normalization, 
optional class-balanced sampling, and partial unfreezing of 
the last VGG block; optimization uses Adam (10−4), batch 
size 32, early stopping, and cosine-annealing restarts. On a 
70/15/15 stratified split, the held-out test set (256 images) 
yields 98% accuracy with strong per-class performance (F1 
≥ 0.97 for Aseel and Gajar), with minor confusions between 
Fasli Toto and Gajar. Learning curves stabilize by epoch 5 
without overfitting, and qualitative grids show consistent 
predictions across sizes and grades. We also outline 
deployment guidance (illumination control, periodic color 
calibration, batched real-time inference) and human-in- 
the-loop verification to support traceability and active 
learning. Our contributions are an orchard-to-export 
pipeline, a simple reproducible training recipe for modest 
datasets, and confusion- aware analyses that surface 
operational failure modes. 
 
Keywords: Date fruit, post-harvest inspection, grading, 
transfer learning, VGG-16, industrial vision, quality 
control. 
 



LITERATURE REVEIW 

Classical machine-vision graders in horticulture relied on 

handcrafted color and texture descriptors (e.g., HSV his- tograms, 

GLCM, LBP) paired with SVMs or random forests. These 

pipelines typically began with background subtraction and color 

normalization, followed by feature computation on the object mask 

and a shallow classifier. Although competitive in tightly controlled 

labs, they were brittle to illumination drift, specular highlights, 

camera replacement, or seasonal changes in surface appearance; 

moreover, they demanded task-specific feature engineering and 

frequent re-tuning when the acquisition setup changed. Deep 

CNNs displaced such pipelines by learning hierarchical features 

directly from pixels, with transfer learning from large natural-

image corpora (e.g., ImageNet) now the de facto strategy when 

domain datasets are modest or imbalanced [25], [26]. Among 

standard backbones, VGG-16 remains attractive for industrial 

deployment thanks to its uniform 3×3 design, stable receptive-

field growth, and predictable latency on commodity hardware even 

as newer architectures surpass it on unconstrained benchmarks 

[27]. In practice, VGG-16’s simplicity eases debugging (e.g., 

feature-map inspection) and facilitates partial unfreezing strategies 

that adapt higher-level filters to commodity- and grade-specific 

cues without destabilizing training. 

Comprehensive surveys focused on fruit and vegetable in- spection 

consistently report that CNN-based methods outper- form 

handcrafted pipelines for external quality tasks such as defect 

detection, size/shape grading, and variety recognition under 

controlled capture (fixed color temperature, diffuse lighting, 

uniform backgrounds) that mirrors post-harvest lines [1], [2], [4]. 

These reviews emphasize capture protocol stan- dardization 

illumination, background material, camera pose, and working 

distance as prerequisites for reproducible accu- racy and 

technology transfer from lab to production. They also highlight 

recurrent error sources (e.g., glare on glossy skins, occlusion at 

cluster boundaries, dust or residue) and recommend moderate 

augmentation (small rotations, flips, low-range brightness/contrast 

jitter) that respects production lighting rather than strong color 

perturbations that may mis- align with deployment conditions. 

Within date-fruit applications specifically, early deep- learning 

studies demonstrated high accuracy for automated sorting, 

defect detection, and ripeness categorization, vali- dating that 

CNNs capture subtle surface and textural cues beyond 

handcrafted descriptors [5]. Subsequent works pivoted to 

surface-quality classification and variety recognition with 

curated datasets and augmentation regimes tailored to con- 

trolled illumination [6]. Broader multi-fruit frameworks (e.g., 

FruitVision) have reported competitive cross-validated accu- 

racy across several commodities including dates supporting the 

generality of CNN-based grading with disciplined data 

collection and preprocessing [8]. In parallel, lightweight or 

domain-tailored CNNs for date-palm imagery (e.g., 

DPXception) suggest that compact models can retain most of 

the accuracy of larger backbones while reducing parameters and 

FLOPs, which is valuable for edge deployment in small and 

medium facilities where GPUs may be, constrained [9]. 

Beyond raw accuracy, real-time inspection studies underline 

systems-level constraints: throughput, latency, and stability. 

Practical deployments exploit batching, fixed input resolu- tions 

(often 224×224 or 256×256), and streamlined pre/post- 

processing to meet conveyor-line targets without sacrificing 

reliability [10]. Reviews further recommend routine calibration 

such as weekly color charts and background checks to con- trol drift, 

along with preventive maintenance for illumination modules [1], [2]. 

These operational considerations are com- plementary to model 

choices: a simpler backbone (e.g., VGG- 16) may be favored when 

predictability, ease of maintenance, and explainability to non-ML 

stakeholders (QA engineers, line supervisors) outweigh marginal 

benchmark gains from more complex architectures. 

In the broader agricultural vision literature, best practices for transfer 

learning include partial unfreezing of higher con- volutional blocks, 

cautious learning-rate schedules, and class balancing (via sampling or 

loss weighting) when label distribu- tions are skewed by commodity, 

grade, or size strata [12], [13]. Methodological variants such as weight-

optimization schemes or hybrid heads that share a backbone across 

related outputs (e.g., variety and grade) can yield incremental gains 

while preserving deployability [15], [16]. Finally, explainability tools 

(e.g., Grad-CAM) are increasingly used to verify that decisions attend 

to varietal markers (shape, surface fissures, tone) rather than 

background artifacts, supporting operator trust, QA au- dits, and root-

cause analysis when errors concentrate in look- alike classes or under 

specific lighting angles [17]. 

DATASET 

We use the Date Fruit Dataset for Inspection and Grad- ing (v3, Oct. 

2023; DOI: 10.17632/s5zfvsw5kv.3). It con- tains images of four 

varieties—Aseel, Fasli Toto, Gajar, and Kupro—captured under 

controlled conditions. The directory structure groups images by size 

(Large/Medium/Small) and grade (Grade-1/2/3), enabling training for 

either variety-only or combined variety/grade tasks. 

A. Splits 

We employ stratified splits of 70/15/15 for train- 

ing/validation/testing, preserving variety (and, where applica- ble, 

grade) proportions. The final held-out test set has 256 images with 

per-class supports reported in the results. If a class has zero support 

due to nested stratification, we exclude it from macro averages and 

state this explicitly. 

B. Augmentation 

We model realistic variation on conveyor belts while re- specting 

controlled imaging: 

 Resize to 224 × 224; 

 Horizontal flip (p = 0.5); 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Proposed end-to-end pipeline. Blue: inference path; orange: training- only 

augmentation; green: evaluation. Backbone: VGG-16 with last conv block 

unfrozen; head: GAP → FC(512)+ReLU+Dropout(0.5) → FC(C)+Softmax. 
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 Small Rotations (±150, 𝑝 = 0.5); 

 Brightness/contrast jitter (±10%, 𝑝 = 03) 

 

We intentionally avoid heavy color shifts to remain faithful to 

production lighting. 

METHODOLOGY 

A. Architecture and Head 

We start from VGG-16 pretrained on ImageNet and adapt it for 

date-fruit inspection. To reduce parameters and improve 

invariance, the original VGG classifier stack is replaced by a 

lightweight head: 

GAP → FC(512) → ReLU → Dropout(0.5) → FC(C), 

where C is the number of classes (either variety or 
variety×grade). Global Average Pooling (GAP) aggregates 
spatial features from conv5 into a compact descriptor, which 
empirically reduces overfitting under controlled imaging. We 

keep conv1–conv4 frozen and unfreeze the entire conv5_* block 

plus the new head so high-level filters can specialize to varietal 

micro-textures and grading cues without destabilizing low-level 

filters as illustrated in Fig. 1. 

Input pipeline and normalization.: Images are resized (or 
center-cropped) to 224 × 224 and normalized with ImageNet 
channel statistics. Color spaces are kept in RGB to align with 
pretraining. Mixed-precision (FP16) inference/training is enabled 
on capable hardware for throughput; master weights 

remain FP32. 

Two-stage adaptation (optional).: To further stabilize training 

on small splits, we optionally use a two-stage sched- ule: (i) head 

warm-up for Ehead=2–3 epochs with the back- 
bone frozen; (ii) unfreeze conv5 with a 10× lower LR on the 
backbone than the head. 

B. Optimization 

We fine-tune VGG-16 using cross-entropy with optional label 
smoothing and class weighting for the variety×grade setting. Let B 
be the batch size, C the number of classes, 𝑦𝑖  ∈ {1, … , 𝐶}  the 
ground-truth label for sample 𝑥𝑖 , 𝑝𝜃(𝑐|𝑥𝑖) the model posterior, 𝑤𝑐 
inverse-frequency class weight (normalized), and 𝜀 ∈ [0, 0.1] the 
smoothing factor. The loss is: 

 

Optimization uses Adam (β1=0.9, β2=0.999) with decoupled 

weight decay 5×10-4. We apply a lower learning rate to the 

unfrozen backbone layers than to the newly initialized head to 

stabilize adaptation: head LR ηhead=10-4 and backbone LR 

ηback=ηhead/10. A cosine-annealing-with- restarts (CAWR) schedule 

controls the step size per iteration with (ηmax, ηmin)=(10-4, 2×10-6), 

base cycle T0=5 epochs, and doubling multiplier γ=2 across 

restarts. We use early stopping with patience P=3 based on 

validation loss (or macro-F1 when class supports are imbalanced) 

and minimum improvement ∆=10-4. 

To prevent unstable updates immediately after unfreezing, 

gradients are clipped by global norm at gmax=5. We further 

maintain an exponential moving average (EMA) of the weights 

θema ← τ θema + (1 − τ ) θ with τ =0.999 and use θema for 

validation/testing to reduce variance across epochs. When class 

imbalance is detected within nested size/grade folders, we enable class-

balanced sampling on the training set and normalize {wc} so     that1/C Σc 

wc=1, keeping the loss scale consistent. 

All key hyperparameters and defaults are summarized in Table ??; we 
keep them fixed across all runs unless otherwise noted in ablations. 

C. Training Loop 

Algorithm 1 details the full procedure, including augmenta- tion, 
balanced sampling, staged unfreezing, CAWR, gradient clipping, and 
EMA updates. 

Inference and throughput.: At test time we disable aug- mentation and 
use a single 224 × 224 pass per image. Batch- ing N =8–16 maintains 
real-time throughput on commodity GPUs/CPUs. The predicted label 
is yˆ = arg maxc pθ(c | x) with confidence pθ(yˆ | x). For human-in-the-
loop operation, we expose top-k predictions with calibrated 
probabilities and log corrections for active learning. 

Evaluation protocol.: We report overall accuracy; macro/weighted 
precision, recall, and F1; and normalized confusion matrices on the 
held-out test set. Seeds, split indices, augmentation parameters, and all 
final hyper-parameters are fixed before testing to prevent leakage and 
ensure reproducibility. 

EXPERIMENTAL SETUP 

All experiments were implemented in PyTorch and executed on a 
single workstation. Images were resized to 224 × 224 

 
 

Algorithm 1 Transfer-learning loop for VGG-16  

Require: Train set Dtr, Val set Dval, batch size B, class 

weights {wc}, seed 

1: Init: Load VGG-16 (ImageNet), replace classifier with 

GAP→FC(512)ReLU Dropout(0.5)→FC(C) 

2: Freeze conv1-conv4; set conv5 + head trainable; set 

LR(head)= η0, LR(backbone)= η0/10 

3: Build balanced dataloader if class skew is detected; enable AMP; 

init Adam + CAWR; set EMA θema ← θ 

4: best ← −∞, pat ← 0 

5: for epoch = 1, . . . , T do 

6: for mini-batch (x, y) ∼ Dtr do 

7: x ← augment(x) (train only): flips (p=0.5), 

±15o rotations (p=0.5), ±10% brightness/contrast 

(p=0.3) 

8: Normalize x to ImageNet stats; AMP forward z = 

fθ(x); p = softmax(z) 

9: Compute smoothed, class-weighted loss 

ℒ = −𝑓𝑟𝑎𝑐1𝐵Ʃ𝑖Ʃ𝑐𝑤𝑐𝑦𝑖,𝑐
(𝜀)

𝑙𝑜𝑔𝑝𝑖,𝑐  

10: AMP backward on ℒ; 𝑐𝑙𝑖𝑝 gradients ‖ ▽ ‖ ≤

 𝑔𝑚𝑎𝑥 ; Adamstep; CAWR step 

11: EMA update: θema ← τ θema + (1 − τ ) θ 

12: end for 

13:  Evaluate θema on Dval: report Acc, macro/weighted 

Precision, Recall, F1, and NLL 

14: if macro-F1 (or −NLL) improves by ≥ δ then  

15: Save checkpoint; best ← current; pat ← 0  

16: else 

17: pat ← pat + 1; if pat > P then break 

18: end if 

19: end for 

20: return best EMA checkpoint 𝜃𝑒𝑚𝑎
∗  
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pixels and normalized to ImageNet channel statistics. Un- less 

otherwise stated, we used the optimization settings in Section 

1/Methodology (Adam, initial LR 10−4 for the head and 10−5 

for unfrozen backbone layers, batch size 32, early stopping 

with patience 3). We trained with mixed precision (FP16) 

when available and fixed random seeds (42) for data shuffling 

and weight initialization. The dataset split protocol and 

augmentations follow Section Dataset. A summary of the 

training hardware is given in Table I. 

We report overall accuracy and class-wise precision, recall, 

and F1 on the held-out test set; validation curves and 

confusion matrices are also provided for diagnostic analysis. 

Inference was measured with the same batch size as training 

for a fair throughput estimate. 

 

RESULTS 

A. Learning Dynamics 

Accuracy rises quickly and stabilizes by epoch 5 (Fig. 2), 

indicating that partial unfreezing plus a cautious learning rate 

is sufficient to adapt ImageNet features to the date- fruit 

domain. Training and validation losses decrease smoothly 

TABLE I 

TRAINING WORKSTATION SPECIFICATIONS 

Component Specification 

 
 

CPU Intel Core i7 
System Memory 32 GB RAM 
GPU NVIDIA GeForce GTX 1060 
GPU VRAM 6 GB 
Framework PyTorch (CUDA enabled) 
Precision FP32 / FP16 (automatic mixed precision) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Accuracy across epochs for training, validation, and testing 

Fig. 3. Training and validation loss across epochs showing stable 

convergence. 

without divergence (Fig. 3), and the gap between curves re- mains 

small after epoch 5, suggesting limited overfitting under the 

controlled-capture distribution. Early stopping typically triggers 

between epochs 6–8. We also monitored the exponen- tially averaged 

weights; their validation curve is marginally smoother but converges 

to the same optimum as the raw weights, so we report test results 

using the EMA checkpoint. 

B. Overall and Per-Class Performance 

On the 256-image held-out test set we achieve 98.0% top-1 accuracy. 

To quantify uncertainty, we compute a nonparamet- ric bootstrap 

(1,000 resamples) of accuracy, yielding a 95% CI of ±1.6 pp. Macro-

averaged precision/recall/F (excluding the class with zero support) 

are all ≥ 0.98, reflecting balanced per-class behavior (Table II).   

Per-class metrics are summarized in Table III. In this split, Kupro has 

zero support in the test partition due to tested stratification, so macro  

TABLE II 
OVERALL METRICS ON THE TEST SET (95% CI VIA BOOTSTRAP). 

Metric Value 95% CI 

Accuracy (top-1) 0.980 [0.964, 0.996] 

Macro Precision 0.987 [0.976, 0.996] 

Macro Recall 0.977 [0.960, 0.992] 

Macro F1 0.981 [0.967, 0.993] 

Weighted F1 0.980 [0.965, 0.994] 

 
TABLE III 

PER-CLASS METRICS ON THE TEST SET. 

 

Class Precision Recall F1 Support 

Aseel 0.99 1.00 0.99 88 

Fasli Toto 1.00 0.94 0.97 70 

Gajar 0.97 0.99 0.98 98 

Kupro – – – 0 

Accuracy  0.98   

 

averages exclude it to avoid inflating means with undefined entries. 

Aseel and Gajar are near- ceiling; Fasli Toto shows a small recall dip 

consistent with visually similar textures to Gajar at certain surface 

sheens. 

C. Comparison with Prior Work 

Table II situates our results against representative works on date-fruit 

inspection or controlled-capture fruit grading. Because tasks, datasets, 

and evaluation protocols differ across studies (e.g., binary quality vs. 

multi-class variety; cross- validation vs. hold-out), these numbers 

should be interpreted as contextual benchmarks rather than strictly 

comparable head- to-head results. 

D. Error Analysis and Confusions 

The confusion matrix (Fig. 4) reveals that misclassifications are 

concentrated between Fasli Toto and Gajar; off-diagonal mass is 

otherwise negligible. Qualitative inspection suggests two recurring 

triggers: (i) localized specular highlights that mute micro-texture cues, 

and (ii) pose/occlusion where the long-axis orientation hides subtle 

surface fissures. A small number of borderline images display mixed 

cues (e.g., color closer to one class, texture closer to the other), which 

likely represent genuine annotation edge cases. 

E. Calibration and Confidence Behavior 

The model exhibits well-behaved confidences: median top-1 softmax 

confidence on correct predictions is ≈ 0.97, and the Expected 

Calibration Error (ECE, 10 bins) is ≈ 0.03. Errors tend to occur at 
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lower confidences (median ≈ 0.61), which is desirable for human-

in-the-loop screening: low-confidence flags align with the small 

set of ambiguous samples. 

F. Qualitative Results 

Figures 5 and 6 show representative predictions across sizes 

and grades with consistent agreement between true and 

predicted labels under the controlled lighting protocol. The 

 

 
 

Fig. 4. Confusion matrix on the held-out test set. 

 

Fig. 5. Qualitative predictions (Set A): true vs. predicted labels on 
random test samples. 

Fig. 6. Qualitative predictions (Set B): additional correctly classified 
samples across varieties and sizes. 

 

gallery in Fig. 8 highlights intra-class appearance diversity 

(shape, surface sheen, minor blemishes) that the model handles 

robustly. For completeness, Fig. 7 includes the sklearn classification 

report corroborating Table III. 

G. Runtime and Throughput 

We measure end-to-end inference throughput (image decode 

→ resize → normalization → forward pass) on the NVIDIA GeForce 

GTX 1060 (6 GB VRAM) and Intel Core i7 CPU 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

Fig. 7. Sklearn classification report for the test set (values echoed in Table III). 

Fig. 8. Per-class gallery illustrating intra-class variation: Aseel, Fasli Toto, Gajar, 

and Kupro. 

used in our setup. Unless otherwise noted, we report FP32 inference 

with batch sizes {1, 8, 16}. Table V summarizes latency per image 

and the corresponding throughput. With batch 16 on the GTX 1060, 

median latency is ≈ 5.2 ms per image  (∼192 img/s), meeting real-

time requirements typical of small-to-medium sorting lines; CPU 

fallback remains usable for offline QA. 

H. Ablations (Summary) 

Freezing the backbone and training only a linear head reduces 

accuracy by ≈ 1.2 pp. Removing brightness/contrast jitter increases 

Fasli Toto→Gajar confusions by ≈ 0.8 pp. Label smoothing ε=0.05 

slightly improves calibration (ECE ↓0.007) with negligible effect on 

accuracy. Using EMA weights provides a small stability benefit on 

validation but does not materially change test accuracy. 
TABLE V 

LATENCY (MS PER IMAGE) AND THROUGHPUT (IMAGES/S) ON OUR 

WORKSTATION. MEDIAN AND 95TH PERCENTILE (P95) OVER 200 
BATCHES 

 
 

 
 

 
 
 
 
 

Device & Batch Latency (p50) Latency (p95) Images/s 

GPU (GTX 1060), B=1 11.8 13.6 85 

GPU (GTX 1060), B=8 6.1 7.3 164 

GPU (GTX 1060), B=16 5.2 6.4 192 

CPU (Core i7), B=8 28.0 33.5 36 
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TABLE IV 

COMPARISON WITH REPRESENTATIVE RELATED WORKS ON DATE-FRUIT (OR FRUIT) GRADING UNDER CONTROLLED CAPTURE. METRICS ARE NOT 

STRICTLY COMPARABLE DUE TO DIFFERING TASKS/DATASETS AND EVALUATION PROTOCOLS (E.G., HOLD-OUT VS. CROSS-VALIDATION). 

 

Work Task / Setting Classes Backbone Reported Performance 

Nasiri et al. (2019) [5] Date sorting / inspection (con- 
trolled capture) 

4 Modified VGG-16 Accuracy: 96.98% (overall) 

Almomen et al. (2023) [6] Surface quality (good vs. poor) 2 EfficientNetB1 
(best) 

Accuracy: 97% 

Hayat et al. (FruitVision, 2024) Multi-fruit grading (includes 3 grades (per FruitVision (DL Ajwa: 99.17%, Mabroom: 

[8] dates), controlled capture date type) model) 98.86% (5-fold CV) 

This work Variety identification (4 
varieties) with grading-ready 
pipeline 

4 VGG-16 transfer 
learning 

Accuracy: 98% (held-out test) 

 

DISCUSSION 

 

A. Why VGG-16 Performs Well                                                                       

The VGG family’s uniform 3×3 kernels, fixed stride/pooling 

schedule, and absence of architectural “tricks”(e.g., multi-branch 

topologies) create smooth, monotonic receptive-field growth 

across layers. For dried dates where discriminative cues are largely 

meso-scale surface patterns (micro-fissures, gentle wrinkling, 

gloss gradients) and color tone this yields feature maps that 

capture local texture statistics while retaining enough spatial 

resolution for shape/elongation cues. In our setting, controlled 

illumination and a plain background further reduce the need for 

strong invariances; consequently, a moderately deep plain CNN 

can match or exceed the accuracy of heavier backbones while 

offering predictable latency on commodity GPUs. 

From an optimization perspective, starting with ImageNet weights 

positions early VGG blocks as generic edge/texture extractors. 

Unfreezing only the last conv block adapts higher-level filters 

to the dataset’s specific morphology (e.g., Fasli Toto vs. Gajar 

surface micro-patterns) without destabiliz- ing training. This 

partially explains the quick convergence we observe (accuracy 

plateaus by epoch 5) and the tight train–val gap. Finally, the 

simplicity of VGG-16 eases failure analysis: intermediate 

activations are interpretable (single-path stack), and Grad-CAM 

heatmaps tend to be compact and on-object, which is desirable for 

QA audits. 

B. Observed Failure Modes 

Look-alike confusions: The dominant error mode is Fasli Toto → 

Gajar, consistent with the classes’ overlapping surface textures 

and similar color tone under certain sheens. Off-diagonal mass 

is otherwise negligible. Two triggers recur in misclassified 

samples: (i) specular highlights that flatten micro-texture 

contrast, and (ii) poses where the long axis is foreshortened, 

suppressing shape cues. 

Photometric drift and background leakage: While our dataset is 

controlled, routine production introduces slow drift (lamp 

aging, white-balance shifts). When not countered, the model 

can over-rely on global tone rather than fine texture, reducing 

robustness to small illumination changes. We also observed that 

tightly cropping the fruit improves robustness by preventing the 

model from keying on background wear patterns. 

Label noise and edge cases: A small subset of borderline images 

mixes cues (color favoring one class, texture an- other). Such 

samples likely reflect annotation difficulty rather than model 

failure; they disproportionately populate the low- confidence 

tail, which our human-in-the-loop design already surfaces. 

 

 

 

Mitigations: We found the following low-overhead mitigations 

effective or promising in pilot tests: 

 Specularity control: add a linear polarizer on the lens and a cross-

polarized light sheet; alternatively, use a matte tray to dampen 

indirect reflections. In data, a light brightness/contrast jitter (±10%) 

already reduces brit- tleness; specularity-aware augmentations 

(random small highlights) may further help. 

 Pose coverage: ensure capture includes slight roll/yaw variation; at 

training time, permit ±15◦ rotations (as used) and occasional left–

right flips to simulate belt perturbations. 

 Tighter crops and masks: auto-crop around the largest connected 

component or apply a soft mask; this reduces background leakage 

without altering the model. 

 Confidence-aware routing: form a “gray zone” (e.g., softmax < 0.7) 

that triggers a second view, different illumination angle, or human 

check. In our results, most errors fall into this low-confidence band. 

 Data curation loop: log low-confidence and corrected cases, then 

fine-tune quarterly (few epochs, low LR). This tends to shrink the 

Fasli Toto/Gajar confusion band with minimal downtime. 

 

C. Ablations (Summary) 

We summarize the ablations most relevant to deployment trade-offs: 

 Frozen backbone vs. partial unfreezing. Training only a linear 

head reduces accuracy by ≈ 1.2 pp relative to un- freezing the 

last conv block; convergence is also slightly slower. 

Unfreezing deeper blocks did not yield consistent gains and 

occasionally destabilized early epochs. 

 Augmentations. Removing brightness/contrast jitter in- 

creases Fasli Toto→Gajar confusions by ≈ 0.8 pp, con- 

firming mild photometric diversity is helpful. Strong color 

jitter or hue shifts harmed validation accuracy under our 

fixed-illumination assumption. 

 Label smoothing and calibration. Using ε=0.05 leaves 

accuracy essentially unchanged but improves calibration 

(ECE ↓ 0.007) and sharpens the separation between 

correct/incorrect confidence distributions, which benefits 

confidence-based routing. 
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 EMA weights. Exponential moving average tracking 

yields slightly smoother validation curves and 

marginal robustness to small LR schedule 

perturbations; test ac- curacy is unchanged, so we 

keep EMA for stability but consider it optional. 

 

 Head capacity. A 512-unit FC with 0.5 dropout 

balanced bias/variance well. Larger heads (e.g., 1024) 

neither improved metrics nor latency appreciably; 

smaller heads (128) increased the look-alike 

confusion by ∼ 0.4 pp. 

 
Overall, the combination of (i) a simple, partially un- frozen 

VGG-16, (ii) mild, illumination-faithful augmenta- tion, and (iii) 

confidence-aware operation offers a robust accuracy–latency–

maintainability trade-off for controlled post- harvest lines. The 

remaining errors are concentrated in vi- sually ambiguous cases 

and are amenable to data-centric improvements (better coverage of 

shiny/foreshortened views) and light hardware adjustments 

(polarizers, diffusers) rather than wholesale architectural changes. 

CONCLUSION 

We introduced a compact VGG-16 transfer-learning pipeline for 

date fruit variety identification and quality grading using a 

controlled-capture public dataset. The approach delivers 98% top-1 

test accuracy with balanced per-class performance and a clear 

confusion profile primarily between Fasli Toto and Gajar. Training 

converges within a few epochs, and the combination of partial 

unfreezing, light augmentation, and calibrated evaluation yields 

stable, reproducible results. Quali- tative grids and confusion-aware 

reporting further substantiate that predictions are driven by on-fruit 

visual cues. Future work will explore multi-task heads for joint 

variety/size/grade inference, lightweight explainability (e.g., Grad-

CAM) to aid analyst review, and continuous learning from curated 

edge cases. The code, weights, and figure assets accompanying this 

study aim to establish a strong, low-friction baseline for date fruit 

inspection research. 
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