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Orchard-to-Export: VGG-16 Transfer Learning for
Date Fruit Inspection and Quality Grading
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Abstract: Reliable grading of date fruits is essential for
export pricing and compliance but still relies largely on
human graders, vyielding variable quality, limited
throughput, and weak traceability. We propose a compact
end-to-end  computer-vision  pipeline  for  variety
identification and quality grading using VGG- 16 transfer
learning. Experiments use the public Date Fruit Dataset for
Inspection and Grading (v3) with four varieties (Aseel,
Fasli Toto, Gajar, Kupro) organized by size and grade,
captured under controlled illumination. Our training recipe
applies light augmentation, ImageNet normalization,
optional class-balanced sampling, and partial unfreezing of
the last VGG block; optimization uses Adam (107%), batch
size 32, early stopping, and cosine-annealing restarts. On a
70/15/15 stratified split, the held-out test set (256 images)
yields 98% accuracy with strong per-class performance (F1
>0.97 for Aseel and Gajar), with minor confusions between
Fasli Toto and Gajar. Learning curves stabilize by epoch 5
without overfitting, and qualitative grids show consistent
predictions across sizes and grades. We also outline
deployment guidance (illumination control, periodic color
calibration, batched real-time inference) and human-in-
the-loop verification to support traceability and active
learning. Our contributions are an orchard-to-export
pipeline, a simple reproducible training recipe for modest
datasets, and confusion- aware analyses that surface
operational failure modes.

Keywords: Date fruit, post-harvest inspection, grading,
transfer learning, VGG-16, industrial vision, quality
control.

INTRODUCTION

Dates are a high—value horticultural commodity across the
Middle East and South Asia, with growing export flows to
Europe and East Asia. Meeting destination-market standards
requires consistent recognition of varieties and assignment
of appearance-based grades, tasks traditionally performed by
skilled human graders. However, manual visual inspection is
slow, fatiguing, and difficult to standardize across shifts and
facilities, leading to variability in outcomes and reduced
throughput [24]. Recent advances in deep convolutional neural
networks (CNNs) have enabled robust, camera-based
inspection for fruits and vegetables, particularly under
controlled illumination and background conditions typical of
post-harvest lines [1], [10].
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Within fruit grading, CNNs have displaced handcrafted color/texture
pipelines by learning task-relevant features directly from images.
Transfer learning from large, generic datasets (e.g., ImageNet) is now
the dominant approach when domain data are modest, improving
accuracy and convergence while reducing annotation burden [12],
[13]. Architectures from the VGG family remain attractive for
industrial de- ployments because of their simplicity, stable receptive
field growth, and predictable latency on commodity hardware, even as
newer backbones achieve higher benchmarks in uncon- strained
settings [5]. In the context of date fruits specifically, prior studies
report strong results with VGG-based models and related CNNs for
variety/quality assessment and real- time inspection, motivating a
careful VGG-16 baseline that is practical for small and medium
facilities [5], [6], [10].

This work uses the publicly available Date Fruit Dataset for
Inspection and Grading (v3) containing four varieties Aseel, Fasli
Toto, Gajar, and Kupro organized by size (Large/Medium/Small) and
grade (1/2/3). Images were captured under controlled conditions at a
fixed camera-to-object distance, reflecting feasible production setups
[28]. Leveraging this structure, we formulate a supervised classification
problem for variety recognition and quality grading, and we design a
training protocol with light geometric/photometric augmenta- tion that
remains faithful to production lighting.

Contributions: We make the following contributions:

- Orchard-to-export pipeline: A compact VGG-16 transfer-
learning pipeline for date fruit inspection that unifies variety
recognition and quality grading under controlled imaging, with
design choices oriented toward deployability.

- Simple, reproducible training: A pragmatic recipe par- tial
unfreezing, mild augmentation, early stopping, and optional
class-balanced sampling that stabilizes learning on modest
datasets while preserving inference speed [12], [13].

- Confusion-aware evaluation: Thorough reporting with
learning curves, class-wise metrics, confusion matrices, and
qualitative grids to surface operational failure modes (e.g.,
Fasli Toto vs. Gajar look-alikes) [1].

- Operational guidance: Practical notes for line inte- gration
(illumination control, periodic color calibration, batching for
throughput) and human-in-the-loop verifica- tion to support
traceability and continuous improvement [10], [24].

In comprehensive experiments on a stratified split of the public
dataset, our VGG-16 model attains high accuracy with balanced per
class performance and stable learning dynamics. We discuss failure
modes, ablations, and deployment considerations, and outline extensions
to multi-task heads and explainability for production adoption.
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LITERATURE REVEIW

Classical machine-vision graders in horticulture relied on
handcrafted color and texture descriptors (e.g., HSV his- tograms,
GLCM, LBP) paired with SVMs or random forests. These
pipelines typically began with background subtraction and color
normalization, followed by feature computation on the object mask
and a shallow classifier. Although competitive in tightly controlled
labs, they were brittle to illumination drift, specular highlights,
camera replacement, or seasonal changes in surface appearance;
moreover, they demanded task-specific feature engineering and
frequent re-tuning when the acquisition setup changed. Deep
CNNs displaced such pipelines by learning hierarchical features
directly from pixels, with transfer learning from large natural-
image corpora (e.g., ImageNet) now the de facto strategy when
domain datasets are modest or imbalanced [25], [26]. Among
standard backbones, VGG-16 remains attractive for industrial
deployment thanks to its uniform 3x3 design, stable receptive-
field growth, and predictable latency on commodity hardware even
as newer architectures surpass it on unconstrained benchmarks
[27]. In practice, VGG-16’s simplicity eases debugging (e.g.,
feature-map inspection) and facilitates partial unfreezing strategies
that adapt higher-level filters to commodity- and grade-specific
cues without destabilizing training.

Comprehensive surveys focused on fruit and vegetable in- spection
consistently report that CNN-based methods outper- form
handcrafted pipelines for external quality tasks such as defect
detection, size/shape grading, and variety recognition under
controlled capture (fixed color temperature, diffuse lighting,
uniform backgrounds) that mirrors post-harvest lines [1], [2], [4].
These reviews emphasize capture protocol stan- dardization
illumination, background material, camera pose, and working
distance as prerequisites for reproducible accu- racy and
technology transfer from lab to production. They also highlight
recurrent error sources (e.g., glare on glossy skins, occlusion at
cluster boundaries, dust or residue) and recommend moderate
augmentation (small rotations, flips, low-range brightness/contrast
jitter) that respects production lighting rather than strong color
perturbations that may mis- align with deployment conditions.

Within date-fruit applications specifically, early deep- learning
studies demonstrated high accuracy for automated sorting,
defect detection, and ripeness categorization, vali- dating that
CNNs capture subtle surface and textural cues beyond
handcrafted descriptors [5]. Subsequent works pivoted to
surface-quality classification and variety recognition with
curated datasets and augmentation regimes tailored to con-
trolled illumination [6]. Broader multi-fruit frameworks (e.qg.,
FruitVision) have reported competitive cross-validated accu-
racy across several commaodities including dates supporting the
generality of CNN-based grading with disciplined data
collection and preprocessing [8]. In parallel, lightweight or
domain-tailored CNNs for date-palm imagery (e.g.,
DPXception) suggest that compact models can retain most of
the accuracy of larger backbones while reducing parameters and
FLOPs, which is valuable for edge deployment in small and
medium facilities where GPUs may be, constrained [9].

Beyond raw accuracy, real-time inspection studies underline
systems-level constraints: throughput, latency, and stability.
Practical deployments exploit batching, fixed input resolu- tions
(often 224x224 or 256%256), and streamlined pre/post-
processing to meet conveyor-line targets without sacrificing
reliability [10]. Reviews further recommend routine calibration

such as weekly color charts and background checks to con- trol drift,
along with preventive maintenance for illumination modules [1], [2].
These operational considerations are com- plementary to model
choices: a simpler backbone (e.g., VGG- 16) may be favored when
predictability, ease of maintenance, and explainability to non-ML
stakeholders (QA engineers, line supervisors) outweigh marginal
benchmark gains from more complex architectures.

In the broader agricultural vision literature, best practices for transfer
learning include partial unfreezing of higher con- volutional blocks,
cautious learning-rate schedules, and class balancing (via sampling or
loss weighting) when label distribu- tions are skewed by commaodity,
grade, or size strata [12], [13]. Methodological variants such as weight-
optimization schemes or hybrid heads that share a backbone across
related outputs (e.g., variety and grade) can yield incremental gains
while preserving deployability [15], [16]. Finally, explainability tools
(e.g., Grad-CAM) are increasingly used to verify that decisions attend
to varietal markers (shape, surface fissures, tone) rather than
background artifacts, supporting operator trust, QA au- dits, and root-
cause analysis when errors concentrate in look- alike classes or under
specific lighting angles [17].

DATASET

We use the Date Fruit Dataset for Inspection and Grad- ing (v3, Oct.
2023; DOI: 10.17632/s5zfvsw5kv.3). It con- tains images of four
varieties—Aseel, Fasli Toto, Gajar, and Kupro—captured under
controlled conditions. The directory structure groups images by size
(Large/Medium/Small) and grade (Grade-1/2/3), enabling training for
either variety-only or combined variety/grade tasks.

A. Splits

We employ stratified splits of 70/15/15 for train-
ing/validation/testing, preserving variety (and, where applica- ble,
grade) proportions. The final held-out test set has 256 images with
per-class supports reported in the results. If a class has zero support
due to nested stratification, we exclude it from macro averages and
state this explicitly.

B. Augmentation
We model realistic variation on conveyor belts while re- specting
controlled imaging:

e Resize to 224 x 224;

e Horizontal flip (p = 0.5);

Legend
Blue = Inference path
Orange = Training-only
Green = Evaluation

Image Acquisition

Backbone: VGG-16

(last conv block
unfrozen)

Pre-processing Dataset Split

FC(512) + RelU +

FC(C) + Softmax Dropout(0.5)

Evaluation
(Accuracy, P/R/F1,
Confusion, ECE)

Predictions
(label + confidence)

Fig. 1. Proposed end-to-end pipeline. Blue: inference path; orange: training- only
augmentation; green: evaluation. Backbone: VGG-16 with last conv block
unfrozen; head: GAP — FC(512)+ReLU+Dropout(0.5) — FC(C)+Softmax.
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e  Small Rotations (+15% p = 0.5);
e  Brightness/contrast jitter (+10%,p = 03)

We intentionally avoid heavy color shifts to remain faithful to
production lighting.

METHODOLOGY

A. Architecture and Head

We start from VGG-16 pretrained on ImageNet and adapt it for
date-fruit inspection. To reduce parameters and improve
invariance, the original VGG classifier stack is replaced by a
lightweight head:

GAP — FC(512) — ReLU — Dropout(0.5) — FC(C),

where C is the number of classes (either variety or
varietyxgrade). Global Average Pooling (GAP) aggregates
spatial features from conv5 into a compact descriptor, which
empirically reduces overfitting under controlled imaging. We
keep convl-conv4 frozen and unfreeze the entire conv5_* block
plus the new head so high-level filters can specialize to varietal
micro-textures and grading cues without destabilizing low-level
filters as illustrated in Fig. 1.

Input pipeline and normalization.: Images are resized (or
center-cropped) to 224 x 224 and normalized with ImageNet
channel statistics. Color spaces are kept in RGB to align with
pretraining. Mixed-precision (FP16) inference/training is enabled
on capable hardware for throughput; master weights
remain FP32.

Two-stage adaptation (optional).: To further stabilize training
on small splits, we optionally use a two-stage sched- ule: (i) head
warm-up for Eneg=2-3 epochs with the back-

bone frozen; (ii) unfreeze convs with a 10x lower LR on the
backbone than the head.

B. Optimization

We fine-tune VGG-16 using cross-entropy with optional label
smoothing and class weighting for the varietyxgrade setting. Let B
be the batch size, C the number of classes, y; € {1, ...,C} the
ground-truth label for sample x;, pg(c|x;) the model posterior, w,
inverse-frequency class weight (normalized), and ¢ € [0,0.1] the
smoothing factor. The loss is:

B

c
1 - .
L= B Z Z W, yf._‘r,] log pg(c | x;), (1)

i=1 c=1

v =(1-e)le=y] + (— 2)

Optimization uses Adam ($7=0.9, p2=0.999) with decoupled
weight decay 5x10“ We apply a lower learning rate to the
unfrozen backbone layers than to the newly initialized head to
stabilize adaptation: head LR mheas=10* and backbone LR
TNback=Nheadt/10. A cosine-annealing-with- restarts (CAWR) schedule
controls the step size per iteration with (Nmax, Nmin)=(10", 2x10°9),
base cycle To=5 epochs, and doubling multiplier y=2 across
restarts. We use early stopping with patience P=3 based on
validation loss (or macro-F; when class supports are imbalanced)
and minimum improvement A=104,

To prevent unstable updates immediately after unfreezing,
gradients are clipped by global norm at gma=5. We further
maintain an exponential moving average (EMA) of the weights
Bema <— T Bema + (1 — 1 ) 0 with T =0.999 and use Oema for
validation/testing to reduce variance across epochs. When class

imbalance is detected within nested size/grade folders, we enable class-
balanced sampling on the training set and normalize {w} so  thatl/C X
wc=1, keeping the loss scale consistent.

All key hyperparameters and defaults are summarized in Table ??; we
keep them fixed across all runs unless otherwise noted in ablations.

C. Training Loop

Algorithm 1 details the full procedure, including augmenta- tion,
balanced sampling, staged unfreezing, CAWR, gradient clipping, and
EMA updates.

Inference and throughput.: At test time we disable aug- mentation and
use a single 224 x 224 pass per image. Batch- ing N =8-16 maintains
real-time throughput on commodity GPUs/CPUs. The predicted label
is y* = arg maxc pO(c | x) with confidence pO(y” | x). For human-in-the-
loop operation, we expose top-k predictions with calibrated
probabilities and log corrections for active learning.

Evaluation protocol.: We report overall accuracy; macro/weighted
precision, recall, and F1; and normalized confusion matrices on the
held-out test set. Seeds, split indices, augmentation parameters, and all
final hyper-parameters are fixed before testing to prevent leakage and
ensure reproducibility.

EXPERIMENTAL SETUP

All experiments were implemented in PyTorch and executed on a
single workstation. Images were resized to 224 x 224

Algorithm 1 Transfer-learning loop for VGG-16
Require: Train set Dy, Val set Dva, batch size B, class
weights {w.}, seed
1: Init: Load VGG-16 (ImageNet), replace classifier with
GAP—FC(512)ReLU Dropout(0.5)—FC(C)
2: Freeze convl-conv4; set conv5+ head trainable; set
LR(head)= 70, LR(backbone)= #0/10
3: Build balanced dataloader if class skew is detected; enable AMP;
init Adam + CAWR; set EMA Gema «<— 0
. beste— —oo, pat— 0
: forepoch=1,...,T do
for mini-batch (x,y) ~ Dy do
X <« augment(x) (train only): flips (p=0.5),
+15° rotations (p=0.5), +10% brightness/contrast

(p=0.3)
8: Normalize x to ImageNet stats; AMP forward z =
fo(X); p = softmax(z)
9: Compute smoothed, class-weighted loss
L= —fraclBEiZCWCyi(‘?logpi,C
10: AMP backward on £; clip gradients || V || <
Imax; Adamstep; CAWR step
11: EMA update: Oema «— T 0emat+ (1 —7) 0
12: end for
13: Evaluate 0ema 0N Dyai: report Acc, macro/weighted
Precision, Recall, F1, and NLL
14: if macro-g1 (or —NLL) improves by > 8 then
15: Save checkpoint; best « current; pat < 0
16: else
17: pat < pat + 1; if pat > P then break
18: end if
19: end for

20: return best EMA checkpoint 6;,,,
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pixels and normalized to ImageNet channel statistics. Un- less
otherwise stated, we used the optimization settings in Section
1/Methodology (Adam, initial LR 10—4 for the head and 10—5
for unfrozen backbone layers, batch size 32, early stopping
with patience 3). We trained with mixed precision (FP16)
when available and fixed random seeds (42) for data shuffling
and weight initialization. The dataset split protocol and
augmentations follow Section Dataset. A summary of the
training hardware is given in Table I.

We report overall accuracy and class-wise precision, recall,
and F1 on the held-out test set; validation curves and
confusion matrices are also provided for diagnostic analysis.
Inference was measured with the same batch size as training
for a fair throughput estimate.

RESULTS
A. Learning Dynamics
Accuracy rises quickly and stabilizes by epoch 5 (Fig. 2),
indicating that partial unfreezing plus a cautious learning rate
is sufficient to adapt ImageNet features to the date- fruit
domain. Training and validation losses decrease smoothly

TABLE |
TRAINING WORKSTATION SPECIFICATIONS

Component Specification
CPU Intel Core i7
System Memory  32GB RAM
GPU NVIDIA GeForce GTX 1060
GPU VRAM 6GB
Framework PyTorch (CUDA enabled)
Precision FP32 / FP16 (automatic mixed precision)
VGG-16
100 4
/
90 4
g
% 804
g
70 4
—— Training Accuracy
60 Testing Accuracy
—— Validation Accuracy

2 a 6 8 10 12 1
Epoch
Fig. 2. Accuracy across epochs for training, validation, and testing

VGG-16
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Fig. 3. Training and validation loss across epochs showing stable
convergence.

without divergence (Fig. 3), and the gap between curves re- mains
small after epoch 5, suggesting limited overfitting under the
controlled-capture distribution. Early stopping typically triggers
between epochs 6-8. We also monitored the exponen- tially averaged
weights; their validation curve is marginally smoother but converges
to the same optimum as the raw weights, so we report test results
using the EMA checkpoint.

B. Overall and Per-Class Performance

On the 256-image held-out test set we achieve 98.0% top-1 accuracy.
To quantify uncertainty, we compute a nonparamet- ric bootstrap
(1,000 resamples) of accuracy, yielding a 95% CI of +1.6 pp. Macro-
averaged precision/recall/F (excluding the class with zero support)
are all > 0.98, reflecting balanced per-class behavior (Table I1).

Per-class metrics are summarized in Table Il1. In this split, Kupro has
zero support in the test partition due to tested stratification, so macro

TABLE Il
OVERALL METRICS ON THE TEST SET (95% CI VIA BOOTSTRAP).
Metric Value 95% ClI
Accuracy (top-1) 0.980 [0.964, 0.996]
Macro Precision 0.987 [0.976, 0.996]
Macro Recall 0.977 [0.960, 0.992]
Macro F; 0.981 [0.967, 0.993]
Weighted Fy 0.980 [0.965, 0.994]
TABLE 11l

PER-CLASS METRICS ON THE TEST SET.

Class Precision Recall Fy Support
Aseel 0.99 1.00 0.99 88
Fasli Toto 1.00 0.94 0.97 70
Gajar 0.97 0.99 0.98 98
Kupro - - - 0
Accuracy 0.98

averages exclude it to avoid inflating means with undefined entries.
Aseel and Gajar are near- ceiling; Fasli Toto shows a small recall dip
consistent with visually similar textures to Gajar at certain surface
sheens.

C. Comparison with Prior Work

Table Il situates our results against representative works on date-fruit
inspection or controlled-capture fruit grading. Because tasks, datasets,
and evaluation protocols differ across studies (e.g., binary quality vs.
multi-class variety; cross- validation vs. hold-out), these numbers
should be interpreted as contextual benchmarks rather than strictly
comparable head- to-head results.

D. Error Analysis and Confusions

The confusion matrix (Fig. 4) reveals that misclassifications are
concentrated between Fasli Toto and Gajar; off-diagonal mass is
otherwise negligible. Qualitative inspection suggests two recurring
triggers: (i) localized specular highlights that mute micro-texture cues,
and (ii) pose/occlusion where the long-axis orientation hides subtle
surface fissures. A small number of borderline images display mixed
cues (e.g., color closer to one class, texture closer to the other), which
likely represent genuine annotation edge cases.

E. Calibration and Confidence Behavior

The model exhibits well-behaved confidences: median top-1 softmax
confidence on correct predictions is = 0.97, and the Expected
Calibration Error (ECE, 10 bins) is = 0.03. Errors tend to occur at
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lower confidences (median = 0.61), which is desirable for human- robustly. For completeness, Fig. 7 includes the sklearn classification
in-the-loop screening: low-confidence flags align with the small  report corroborating Table III.

set of ambiguous samples.

F. Qualitative Results

Figures 5 and 6 show representative predictions across sizes
and grades with consistent agreement between true and
predicted labels under the controlled lighting protocol. The

VGG-16

o o

Aseel

Fasli Toto

True

Gajar

-20

Kupro
o
o
o
Q

aAseel Fasli Toto Gajar Kupro
Predicted

Fig. 4. Confusion matrix on the held-out test set.

True: Gajar
Predicted: Gajar

True: Gajar
Predicted: Ga ar

True: Gajar
Predicted: Gajar

True: Gajar
Predicted: Gajar

True: Fasli Toto
Predicted: Fasli Toto

True: Aseel
Predicted: Aseel

True: Aseel
Predicted: Aseel

True: Fasli Toto
Predicted: Fasli Toto

True: Gajar

Fig. 5. Qualitative predictions (Set A): true vs. predicted labels on
random test samples.

True: Fasli Toto True: Gajar
Predicted: Fasli Toto Predicted: Gajar

True: Gajar True: Gajar
Predicted: Gajar Predicted: Gajar

True: Aseel
Predicted: Aseel

True: Gajar True: Aseel

Predicted: Gajar

True: Aseel
Predicted: Aseel

Fig. 6. Qualitative predictions (Set B): additional correctly classified
samples across varieties and sizes.

True: Gajar
Predicted: Gajar

True: Gajar

gallery in Fig. 8 highlights intra-class appearance diversity
(shape, surface sheen, minor blemishes) that the model handles

True: Fasli Toto
Predicted: Fasli Toto

Predicted: Gajar

Predicted: Aseel

Predicted: Gajar

G. Runtime and Throughput

We measure end-to-end inference throughput (image decode

— resize — normalization — forward pass) on the NVIDIA GeForce
GTX 1060 (6 GB VRAM) and Intel Core i7 CPU

_warn_prf(average, modifier, msg start, len(result))

Classification Report (Testing Set):
precision

recall fl-score support
Aseel - : .99 88
Fasli Toto : : 97 70
Gajar . : .98 98

Kupro : .00 .00 0

accuracy .98 256
macro avg : : 74 256
weighted avg . . .98 256

Fig. 7. Sklearn classification report for the test set (values echoed in Table I11).

Class: Gajar Class: Gajar

Class: Kupro Class: Gajar Class: Gajar

Class: Gajar Class: Aseel Class: Gajar

Class: Aseel

Fig. 8. Per-class gallery illustrating intra-class variation: Aseel, Fasli Toto, Gajar,
and Kupro.

Class: Kupro

used in our setup. Unless otherwise noted, we report FP32 inference
with batch sizes {1, 8, 16}. Table V summarizes latency per image
and the corresponding throughput. With batch 16 on the GTX 1060,
median latency is = 5.2 ms per image (~192 img/s), meeting real-
time requirements typical of small-to-medium sorting lines; CPU
fallback remains usable for offline QA.

H. Ablations (Summary)

Freezing the backbone and training only a linear head reduces
accuracy by = 1.2 pp. Removing brightness/contrast jitter increases
Fasli Toto—~Gajar confusions by = 0.8 pp. Label smoothing £=0.05
slightly improves calibration (ECE |0.007) with negligible effect on
accuracy. Using EMA weights provides a small stability benefit on

validation but does not materially change test accuracy.
TABLE V
LATENCY (MS PER IMAGE) AND THROUGHPUT (IMAGES/S) ON OUR
WORKSTATION. MEDIAN AND 95TH PERCENTILE (P95) OVER 200
BATCHES

Device & Batch Latency (p50) Latency (p95) Images/s
GPU (GTX 1060), B=1 11.8 13.6 85
GPU (GTX 1060), B=8 6.1 7.3 164
GPU (GTX 1060), B=16 52 6.4 192
CPU (Core i7), B=8 28.0 335 36
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TABLE IV
COMPARISON WITH REPRESENTATIVE RELATED WORKS ON DATE-FRUIT (OR FRUIT) GRADING UNDER CONTROLLED CAPTURE. METRICS ARE NOT
STRICTLY COMPARABLE DUE TO DIFFERING TASKS/DATASETS AND EVALUATION PROTOCOLS (E.G., HOLD-OUT VS. CROSS-VALIDATION).

Work Task / Setting

Classes

Backbone Reported Performance

Nasiri et al. (2019) [5] Date sorting / inspection (con- 4

trolled capture)

Modified VGG-16 ~ Accuracy: 96.98% (overall)

Almomen et al. (2023) [6] Surface quality (good vs. poor) 2 EfficientNetB1 Accuracy: 97%
(best)

Hayat et al. (FruitVision, 2024) Multi-fruit grading (includes 3 grades (per FruitVision (DL  Ajwa: 99.17%, Mabroom:
[8] dates), controlled capture date type) model) 98.86% (5-fold CV)
This work Variety identification (4 4 VGG-16  transfer Accuracy: 98% (held-out test)

varieties) with grading-ready learning

pipeline

DISCUSSION

A. Why VGG-16 Performs Well

The VGG family’s uniform 3x3 kernels, fixed stride/pooling
schedule, and absence of architectural “tricks”(e.g., multi-branch
topologies) create smooth, monotonic receptive-field growth
across layers. For dried dates where discriminative cues are largely
meso-scale surface patterns (micro-fissures, gentle wrinkling,
gloss gradients) and color tone this yields feature maps that
capture local texture statistics while retaining enough spatial
resolution for shape/elongation cues. In our setting, controlled
illumination and a plain background further reduce the need for
strong invariances; consequently, a moderately deep plain CNN
can match or exceed the accuracy of heavier backbones while
offering predictable latency on commodity GPUs.

From an optimization perspective, starting with ImageNet weights
positions early VGG blocks as generic edge/texture extractors.
Unfreezing only the last conv block adapts higher-level filters
to the dataset’s specific morphology (e.g., Fasli Toto vs. Gajar
surface micro-patterns) without destabiliz- ing training. This
partially explains the quick convergence we observe (accuracy
plateaus by epoch 5) and the tight train—val gap. Finally, the
simplicity of VGG-16 eases failure analysis: intermediate
activations are interpretable (single-path stack), and Grad-CAM
heatmaps tend to be compact and on-object, which is desirable for
QA audits.

B. Observed Failure Modes

Look-alike confusions: The dominant error mode is Fasli Toto —
Gajar, consistent with the classes’ overlapping surface textures
and similar color tone under certain sheens. Off-diagonal mass
is otherwise negligible. Two triggers recur in misclassified
samples: (i) specular highlights that flatten micro-texture
contrast, and (ii) poses where the long axis is foreshortened,
suppressing shape cues.

Photometric drift and background leakage: While our dataset is
controlled, routine production introduces slow drift (lamp
aging, white-balance shifts). When not countered, the model
can over-rely on global tone rather than fine texture, reducing
robustness to small illumination changes. We also observed that
tightly cropping the fruit improves robustness by preventing the
model from keying on background wear patterns.

Label noise and edge cases: A small subset of borderline images
mixes cues (color favoring one class, texture an- other). Such
samples likely reflect annotation difficulty rather than model
failure; they disproportionately populate the low- confidence
tail, which our human-in-the-loop design already surfaces.

Mitigations: We found the following
effective or promising in pilot tests:

low-overhead mitigations

e Specularity control: add a linear polarizer on the lens and a cross-
polarized light sheet; alternatively, use a matte tray to dampen
indirect reflections. In data, a light brightness/contrast jitter (+10%)
already reduces brit- tleness; specularity-aware augmentations
(random small highlights) may further help.

o Pose coverage: ensure capture includes slight roll/yaw variation; at
training time, permit +15° rotations (as used) and occasional left—
right flips to simulate belt perturbations.

o Tighter crops and masks: auto-crop around the largest connected
component or apply a soft mask; this reduces background leakage
without altering the model.

o Confidence-aware routing: form a “gray zone” (e.g., softmax < 0.7)
that triggers a second view, different illumination angle, or human
check. In our results, most errors fall into this low-confidence band.

e Data curation loop: log low-confidence and corrected cases, then
fine-tune quarterly (few epochs, low LR). This tends to shrink the
Fasli Toto/Gajar confusion band with minimal downtime.

C. Ablations (Summary)
We summarize the ablations most relevant to deployment trade-offs:

e Frozen backbone vs. partial unfreezing. Training only a linear
head reduces accuracy by = 1.2 pp relative to un- freezing the
last conv block; convergence is also slightly slower.
Unfreezing deeper blocks did not yield consistent gains and
occasionally destabilized early epochs.

e Augmentations. Removing brightness/contrast jitter in-
creases Fasli Toto—Gajar confusions by = 0.8 pp, con-
firming mild photometric diversity is helpful. Strong color
jitter or hue shifts harmed validation accuracy under our
fixed-illumination assumption.

e Label smoothing and calibration. Using &=0.05 leaves
accuracy essentially unchanged but improves calibration
(ECE | 0.007) and sharpens the separation between
correct/incorrect confidence distributions, which benefits
confidence-based routing.
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e EMA weights. Exponential moving average tracking
yields slightly smoother validation curves and
marginal  robustness to small LR schedule
perturbations; test ac- curacy is unchanged, so we
keep EMA for stability but consider it optional.

e Head capacity. A 512-unit FC with 0.5 dropout
balanced bias/variance well. Larger heads (e.g., 1024)
neither improved metrics nor latency appreciably;
smaller heads (128) increased the look-alike
confusion by ~ 0.4 pp.

Overall, the combination of (i) a simple, partially un- frozen
VGG-16, (ii) mild, illumination-faithful augmenta- tion, and (iii)
confidence-aware operation offers a robust accuracy-latency—
maintainability trade-off for controlled post- harvest lines. The
remaining errors are concentrated in vi- sually ambiguous cases
and are amenable to data-centric improvements (better coverage of
shiny/foreshortened views) and light hardware adjustments
(polarizers, diffusers) rather than wholesale architectural changes.

CONCLUSION

We introduced a compact VGG-16 transfer-learning pipeline for
date fruit variety identification and quality grading using a
controlled-capture public dataset. The approach delivers 98% top-1
test accuracy with balanced per-class performance and a clear
confusion profile primarily between Fasli Toto and Gajar. Training
converges within a few epochs, and the combination of partial
unfreezing, light augmentation, and calibrated evaluation vyields
stable, reproducible results. Quali- tative grids and confusion-aware
reporting further substantiate that predictions are driven by on-fruit
visual cues. Future work will explore multi-task heads for joint
variety/size/grade inference, lightweight explainability (e.g., Grad-
CAM) to aid analyst review, and continuous learning from curated
edge cases. The code, weights, and figure assets accompanying this
study aim to establish a strong, low-friction baseline for date fruit
inspection research.

Competing Interest
The authors declare no competing interest.
REFERENCES

[1] L. E. Chuquimarca, F. Reyes, and J. Paredes, “A review of
external quality inspection for fruit grading using computer
vision and machine learning,” Current Research in Food
Science, wvol. 8, ~p. 100504, 2024. doi:
10.1016/j.crfs.2024.100504.

[2] T. Akter et al., “A comprehensive review of external
quality measurements of vegetables and fruits using
computer vision,” Cleaner Engineering and Technology,
vol. 18, p. 100605, 2024. doi: 10.1016/j.clet.2024.100605.

[3] K. Maitlo, R. A. Shaikh, and R. H. Arain, “Date Fruit
Dataset for Inspection and Grading,” Mendeley Data, ver.
3, 2023. doi: 10.17632/s5zfvswbkv.3. [Accessed: Sep. 29,
2025].

[4] O. Olorunfemi et al., “Advancements in machine visions
for fruit sorting and grading: a bibliometric analysis,” Food
Chemistry Advances, vol. 3, p. 100191, 2024. doi:
10.1016/j.focha.2024.100191.

[5] Nasiri, A. Taheri-Garavand, and M. Omid, “Image-based deep
learn- ing automated sorting of date fruit,” International Journal of
Production Economics, vol. 211, pp. 26-39, 2019. doi:
10.1016/j.ijpe.2019.01.008.

[6] M. Almomen, H. Almulhim, H. Alnuzha et al., “Date fruit
classification based on surface quality using deep learning,”
Applied Sciences, vol. 13, no. 13, p. 7821, 2023. doi:
10.3390/app13137821.

[7] Alsirhani et al., “A novel classification model of date fruit dataset
using deep learning,” Electronics, vol. 12, no. 3, p. 665, 2023. doi:
10.3390/electronics12030665.

[8] Hayat et al., “FruitVision: A deep learning based automatic fruit
grading system,” Open Agriculture, vol. 9, no. 1, pp. 1-12, 2024.
doi: 10.1515/0pag-2022-0276.

[9] M. Safran et al., “DPXception: a lightweight CNN for image-
based date palm phenotyping,” Plant Methods, vol. 20, no. 1, p. 6,
2024. doi: 10.1186/s13007-023-01156-4.

[10] N. Ismail, O. A. Malik et al., “Real-time visual inspection system
for grading fruits using computer vision and deep learning
techniques,” Information Processing in Agriculture, vol. 9, no. 1,
pp. 24-37, 2022. doi: 10.1016/j.inpa.2021.01.005.

[11] N. Maitlo, N. Noonari, K. Arshid, N. Ahmed, and S. Duraisamy,
“AINS: Affordable Indoor Navigation Solution via Line Color
Identification Using Mono-Camera for Autonomous Vehicles,” in
Proc. 2024 IEEE 9th Int. Conf. for Convergence in Technology
(12CT), 2024, pp. 1-7.

[12] Z. Al Sahili, A. Al-Bakri, N. Hijjawi et al., “The power of transfer
learning in agricultural applications,” Frontiers in Plant Science,
vol. 13, p. 992700, 2022. doi: 10.3389/fpls.2022.992700.

[13]M. 1. Hossen et al., “Transfer learning in agriculture: a review,”
Artificial Intelligence Review, 2025. doi: 10.1007/s10462-024-
11081-x.

[14]N. Maitlo, N. Noonari, S. A. Ghanghro, S. Duraisamy, and F.
Ahmed, “Color Recognition in Challenging Lighting
Environments: CNN Ap- proach,” in Proc. 2024 IEEE 9th Int.
Conf. for Convergence in Technol- ogy (12CT), 2024, pp. 1-7.

[15]M. H. Saleem et al., “A weight optimization-based transfer
learning approach for plant disease detection,” Frontiers in Plant
Science, vol. 13, p. 1008079, 2022. doi:
10.3389/fpls.2022.1008079.

[16]H. S. Gill et al., “Fruit type classification using deep learning and
feature fusion,” Computers and Electronics in Agriculture, vol.
208, p. 107745, 2023. doi: 10.1016/j.compag.2023.107745.

[17]S. Mostafa et al., “Explainable deep learning in plant
phenotyping,” Frontiers in Artificial Intelligence, vol. 6, p.
1203546, 2023. doi: 10.3389/frai.2023.1203546.

[18]N. Nooruddin, R. Dembani, and N. Maitlo, “HGR: Hand-
Gesture-Recognition Based Text Input Method for AR/VR
Wearable Devices,” in Proc. IEEE SMC, 2020, pp. 744-751.
doi:10.1109/SMC42975.2020.9283348



ILMA Journal of Technology & Software Management - [JTSM Vol. 6 Issue. 2

[19]N. Maitlo, S. K. Bhutto, M. Mahdi, and S. A. Mangi,
“GDTII: Gesture Driven Text Input for Immersive
Interfaces,” ILMA Journal of Technology & Software
Management, vol. 5, no. 2, 2024.

[20] K. K. Patel, A. Kar, S. N. Jha, and M. A. Khan, “Machine
vision system: a tool for quality inspection of food and
agricultural products,” Journal of Food Science and
Technology, vol. 49, no. 2, pp. 123-141, 2012. doi:
10.1007/s13197-011-0321-4.

[21]S. J. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Transac- tions on Knowledge and Data Engineering,
vol. 22, no. 10, pp. 1345~ 1359, 2010. doi:
10.1109/TKDE.2009.191.

[22]]. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How
transferable are features in deep neural networks?” in
Advances in Neural Information Processing Systems
(NeurlIPS), vol. 27, 2014, pp. 3320-3328.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. Int.
Conf. on Learning Representations (ICLR), 2015. [Online].
Auvailable: arXiv:1409.1556

[24] K. K. Patel, A. Kar, S. N. Jha, and M. A. Khan, “Machine
vision system: a tool for quality inspection of food and
agricultural products,” Journal of Food Science and
Technology, vol. 49, no. 2, pp. 123-141, 2012. doi:
10.1007/s13197-011-0321-4.

[25]S. J. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Transac- tions on Knowledge and Data Engineering,
vol. 22, no. 10, pp. 1345~ 1359, 2010. doi:
10.1109/TKDE.2009.191.

[26]J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How
transferable are features in deep neural networks?” in
Advances in Neural Information Processing Systems
(NeurlIPS), vol. 27, 2014, pp. 3320-3328.

[27]1 K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. Int.
Conf. on Learning Representations (ICLR), 2015. [Online].
Auvailable: arXiv:1409.1556

[28] K. Maitlo, R. A. Shaikh, and R. H. Arain, “Date Fruit
Dataset for Inspection and Grading,” Mendeley Data, ver.
3, 2023. doi: 10.17632/s5zfvswbkv.3. [Accessed: Sep. 29,
2025].

71



